Advertisement

Une inegalite pour martingales a indices multiples et ses applications

  • R. Cairoli
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 124)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    J. L. Doob, Stochastic processes, J. Wiley, New York, 1953.zbMATHGoogle Scholar
  2. [2]
    P. A. Meyer, Probabilités et potentiel, Hermann, Paris, 1966.zbMATHGoogle Scholar
  3. [3]
    B. Jessen, J. Marcinkiewicz et A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math., 25, 1935, p. 217–234.zbMATHGoogle Scholar
  4. [4]
    M. Brelot et J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier, 13, 1963, p. 395–415.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Zygmund, Trigonometric Series, Cambridge University Press, 1959.Google Scholar
  6. [6]
    H. Kunita et T. Watanabe, Markov processes and Martin boundaries I, Illinois J. Math., 9, 1965, p. 485–526.MathSciNetzbMATHGoogle Scholar
  7. [7]
    P. A. Meyer, Processus de Markov: la frontière de Martin, Lecture Notes in Math., 77, Springer Verlag, Berlin, 1968.CrossRefzbMATHGoogle Scholar
  8. [8]
    R. Cairoli, Une représentation intégrale pour fonctions séparément excessives, Ann. Inst. Fourier, 18, 1968, p. 317–338.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J. L. Doob, Probability methods applied to the first boundary value problem, Proc. third Berkeley Symp., vol. 2, 1956, p. 49–80.MathSciNetzbMATHGoogle Scholar
  10. [10]
    H. Föllmer, Feine Toplogie am Martinrand eines Standardprozesses, Thèse, Université de Erlangen-Nürnberg, 1968.Google Scholar
  11. [11]
    J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. math. France, 85, 1957, p.431–458.MathSciNetzbMATHGoogle Scholar
  12. [12]
    R. Cairoli, Sur une classe de fonctions séparément excessives, Comptes rendus, 267, série A, 1968, p. 412–414.MathSciNetzbMATHGoogle Scholar
  13. [13]
    A. Zygmund, On the differentiability of multiple integrals, Fund. Math., 23, 1934, p. 143–149.zbMATHGoogle Scholar
  14. [14]
    S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math., 22, 1934, p. 257–261.zbMATHGoogle Scholar
  15. [15]
    J. B. Walsh, Probability and a Dirichlet problem for multiply superharmonic functions, Thèse, Illinois University, 1966.Google Scholar
  16. [16]
    J. L. Doob, Some classical function theory theorems and their moder versions, Ann. Inst. Fourier, 15, 1965, p. 113–136.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • R. Cairoli
    • 1
  1. 1.Ecole Polytechnique Fédérale LausanneSuisse

Personalised recommendations