Advertisement

The higman theorem for En (A) computable groups

  • R. W. Gatterdam
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 319)

AMS 1969 subject classifications

Primary 02F47 20F05 20F10 Secondary 02F35 20E30 Key words and phrases Computable groups group presentation word problem embeddings of groups Higman theorem computable function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. B. Cannonito, Hierarchies of computable groups and the word problem, Journal of symbolic logic 31 (1966) 376–392.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    F. B. Cannonito and R. W. Gatterdam, The computability of group constructions, part I, Proceedings of the Irvine conference on decision problems in group theory (North Holland in preparation).Google Scholar
  3. [3]
    C. R. J. Clapham, Finitely presented groups with word problem of arbitrary degrees of insolubility, Proceedings of the London Mathematical Society 14 (1966) 633–676.MathSciNetzbMATHGoogle Scholar
  4. [4]
    C. R. J. Clapham, An embedding theorem for finitely generated groups, Proceedings of the London Mathematical Society 17 (1967) 419–430.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    R. W. Gatterdam, Embeddings of primitive recursive computable groups, doctoral dissertation, University of California, Irvine, 1970. Submitted to Annals of mathematical logic.Google Scholar
  6. [6]
    R. W. Gatterdam, The Higman theorem for primitive recursive groups—a preliminary report, Proceedings of the Irvine conference on decision problems in group theory (North Holland in preparation).Google Scholar
  7. [7]
    R. W. Gatterdam, The computability of group constructions part II, to appear.Google Scholar
  8. [8]
    A. Grzegorczyk, Some classes of recursive functions, Rozprawy Mathmetyczne 4 (1953) 46 pp.Google Scholar
  9. [9]
    G. Higman, Subgroups of finitely presented groups, Proceedings of the Royal Society, A 262 (1961) 455–475.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. O. Rabin, Computable algebra, general theory and theory of computable fields, Transactions of the American Mathematical Society 95 (1960) 341–360.MathSciNetzbMATHGoogle Scholar
  11. [11]
    R. W. Ritchie, Classes of recursive functions based on Ackerman's function, mimeographed lecture notes, University of Washington, 1963.Google Scholar
  12. [12]
    J. R. Schoenfield, Mathematical Logic (Addison Wesley 1967).Google Scholar

Copyright information

© Springer Verlag 1973

Authors and Affiliations

  • R. W. Gatterdam
    • 1
  1. 1.The University of Wisconsin-ParksideUSA

Personalised recommendations