Advertisement

Invariant subspaces of non-quasitriangular operators

  • R. G. Douglas
  • Carl Pearcy
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 345)

Keywords

Hilbert Space Invariant Subspace Compact Operator Toeplitz Operator Diagonal Entry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Apostol, Quasitriangularity in Hilbert space, Indiana U. Math. J., 1973.Google Scholar
  2. [2]
    C. Apostol, C. Foiaş, and L. Zsido, Some results on nonquasitriangular operators, Indiana U. Math. J., 1973.Google Scholar
  3. [3]
    C. Apostol, C. Foiaş, and D. Voiculescu, Some results on non-quasitriangular operators II, Rev. Roum. Math. Pures et Appl., 1973.Google Scholar
  4. [4]
    _____, Some results on nonquasitriangular operators III, Rev. Roum. Math. Pures et Appl., 1973.Google Scholar
  5. [5]
    _____, Some results on nonquasitriangular operators IV, Rev. Roum. Math. Pures et Appl., 1973.Google Scholar
  6. [6]
    C. Berger and B. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, to appear in Bull. Amer. Math. Soc. 79 (1973).Google Scholar
  7. [7]
    A. Brown and C. Pearcy, Compact restrictions of operators, Acta Sci. Math. (Szeged), 32 (1971) 271–282.MathSciNetzbMATHGoogle Scholar
  8. [8]
    L. Brown, R. Douglas and P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, these Notes.Google Scholar
  9. [9]
    L. Brown, R. Douglas and P. Fillmore, Extensions of C*-algebras, operators with compact self-commutators, and K-homology, to appear in Bull. Amer. Math. Soc. 79 (1973).Google Scholar
  10. [10]
    D. Deckard, R. Douglas and C. Pearcy, On invariant subspaces of quasitriangular operators, Amer. J. Math., 91 (1969) 637–647.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    R. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press New York, 1972.zbMATHGoogle Scholar
  12. [12]
    R. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS Lecture 15, American Math. Soc. Providence, 1973.Google Scholar
  13. [13]
    R. Douglas and C. Pearcy, A note on quasitriangular operators, Duke Math. J., 37 (1970) 177–188.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged), 29 (1968) 283–293.MathSciNetzbMATHGoogle Scholar
  15. [15]
    C. Pearcy, Some unsolved problems in operator theory, preprint circulated in 1972.Google Scholar
  16. [16]
    C. Pearcy and N. Salinas, An invariant subspace theorem, Mich. Math. J., 20 (1973) 21–31.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Pearcy and N. Salinas, Compact perturbations of semi-normal operators, Indiana U. Math. J., 22 (1973) 789–793.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Sarason, Representing measures for R(X) and their Greens functions, J. Functional Anal., 7 (1971) 359–385.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. G. Douglas
    • 1
    • 2
  • Carl Pearcy
    • 1
    • 2
  1. 1.State University of New York at Stony BrookUSA
  2. 2.University of MichiganUSA

Personalised recommendations