Advertisement

Opérateurs différentiels elliptiques sur un espace analytique

  • Thomas Bloom
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 275)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    M. F. Atiyah. Global theory of elliptio operators. Proc. Int. Conf. Functional Analysis and Related Topics, 1969 Tokyo.Google Scholar
  2. 2.
    M. F. Atiyah and I. M. Singer. The index of elliptic operators I. Ann. of Math 87 (1963), p. 484–530.MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Bloom. Opérateurs Différentiels sur un espace analytique complexe. Séminaire P. Lelong Lecture Notes in Mathematics #71. p. 1–21.Google Scholar
  4. 4.
    H. O. Cordes and E.A. Herman. Gelfand theory of pseudo-différential operators. Am. J. of Math. 90 (1968) p. 681–718.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Dixmier. Les C* algèbres et leurs représentations Gauthier-Villars Paris (1964).Google Scholar
  6. 6.
    A. Grothendieck. Eléments de Géométre Algébrique Publ. Math de I.H.E. S. #32.Google Scholar
  7. 7.
    L. Hörmander. Linear Partial Differential Equations. Springer Verlag (1963).Google Scholar
  8. 8.
    J. Kohn and L. Nirenberg. An algebra of pseudo-differential operators. Comm. Pure Appl. Math 18 (1965) p. 269–305.MATHMathSciNetGoogle Scholar
  9. 9.
    R. T. Seeley. Complex powers of an elliptic operator. Symposia in Pure Math A.M.S. X (1967).Google Scholar
  10. 10.
    I. M. Singer. Future extensions of index theory and elliptic operators (conférence a Princeton).Google Scholar
  11. 11.
    J. Stutz. The representation problem for differential operators on analytic sets. Math. Ann. 89 (1970) p. 121–134.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Thomas Bloom

There are no affiliations available

Personalised recommendations