On the uniformisation of sets in topological spaces

  • T. Parthasarathy
Part of the Lecture Notes in Mathematics book series (LNM, volume 263)


Topological Space Measurable Cardinal Cylinder Parallel Borel Class Satisfactory Generalisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. J. Aumann, Measurable utility and the measurable choice theorem, Proc. Int. Colloq., La Decision, C.N.R.S., Aix-en-Provence [1967], 15–26.Google Scholar
  2. [2]
    S. Braun, Sur l'uniformisation des ensembles fermes, Fund. Math, 28 [1937], 214–218.zbMATHGoogle Scholar
  3. [3]
    N. Lusin, Lecons sur les ensembles analytiques et leurs applications. Paris, [1930].Google Scholar
  4. [4]
    N. Lusin, Sur le probleme de M.J. Hadamard d'uniformisation des ensembles. Mathematica, 4 [1930], 54–66.zbMATHGoogle Scholar
  5. [5]
    N. Lusin and P. Novikoff, Choix effectif d'un point dans un complementaire analytic arbitraire, donne par un crible, Fund. Math, 25 [1935], 559–560.zbMATHGoogle Scholar
  6. [6]
    C. A. Rogers and R. C. Willmott, On the uniformisation of sets in topological spaces, Acta. Math 120 [1968], 1–52.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W. Sierpinski, Sur l'uniformisation des ensembles measurables (B), Fund. Math 16, [1930], 136–139.zbMATHGoogle Scholar
  8. [8]
    R. Solovay, A model of set theorey in which every set of reals is Lebesgue measurable, Ann. Math 92, [1970], pp 2.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • T. Parthasarathy

There are no affiliations available

Personalised recommendations