Skip to main content

Approximating geometric domains through topological triangulations

  • Conference paper
  • First Online:
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1346))

  • 141 Accesses

Abstract

This paper introduces a 2-dimensional triangulation scheme based on a topological triangulation that approximates a given domain X within a specified Hausdorff distance from X. The underlying space of the resulting good quality triangulation is homeomorphic to X and contains either equilateral triangles or right angled triangles with 30‡, 60‡ and 90‡ angles. For a particular range of approximation tolerance, the number of triangles in the triangulation produced by the method is O(t log2 t) where t is the number of triangles in an optimal triangulation where the optimum is taken over bounded aspect ratio triangulations satisfying a certain boundary condition with respect to X. The method can also produce a quadrangulation of X having similar properties. Relevant implementation issues and results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Baker. Automatic mesh generation for complex three-dimensional regions using constrained Delaunay triangulation. Engineering with Computers, vol. 5, 1989, 161–175.

    Article  Google Scholar 

  2. M. Bern, D. Eppstein and J. Gilbert. Provably good mesh generation. Proc. 31st IEEE Sympos. Found. Comput. Sci., 1990, 231–241.

    Google Scholar 

  3. M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Computing in Euclidean Geometry, D. Z. Du and F. K. Hwang (eds.), World Scientific, 1992.

    Google Scholar 

  4. M. Bern, D. Dobkin and D. Eppstein. Triangulating polygons without large angles. Proc. 8th Ann. Sympos. Comput. Geom., 1992, 222–231.

    Google Scholar 

  5. M. Bern, S. A. Mitchell and J. Ruppert. Linear-size nonobtuse triangulation of polygons. Proc. 10th Ann. Sympos. Comput. Geom., 1994, 221–230.

    Google Scholar 

  6. L. P. Chew. Guaranteed quality triangular meshes. Tech. Report, TR89-983, Dept. of Comput. Sc., Cornell Univ., Ithaca, NY, 1989.

    Google Scholar 

  7. H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. Proc. 10th Ann. Sympos. Comput. Geom., 1994, 285–292.

    Google Scholar 

  8. J. D. Foley, A. Van Dam, S. K. Feiner, et al. Computer Graphics: Principles and Practice, Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  9. P. S. Heckbert and M. Garland. Multiresolution modeling for fast rendering. Proc. Graphics Interface, 1994, 43–50.

    Google Scholar 

  10. C. M. Hoffmann. Geometric and Solid Modeling An Introduction. Morgan Kaufmann Publishers, Inc., 1989.

    Google Scholar 

  11. P. M. Hubbard. Approximating polyhedra with spheres for time-critical collison detection. ACM Trans. Graphics, vol. 15, 1996, 179–210.

    Article  Google Scholar 

  12. S. Ramaswami, P. Ramos and G. Toussaint. Converting triangulations to quadrangulations. Proc. 7th Canad. Conf. Comput. Geom., 1995, 297–302.

    Google Scholar 

  13. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. manuscript, 1993.

    Google Scholar 

  14. N. R. Shah. Homeomorphic meshes in R3. Proc. 7th Canad. Conf. Comput. Geom., 1995, 25–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S. Ramesh G Sivakumar

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dey, T.K., Roy, A., Shah, N.R. (1997). Approximating geometric domains through topological triangulations. In: Ramesh, S., Sivakumar, G. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1997. Lecture Notes in Computer Science, vol 1346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0058019

Download citation

  • DOI: https://doi.org/10.1007/BFb0058019

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63876-6

  • Online ISBN: 978-3-540-69659-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics