Skip to main content

A biologically inspired object tracking system

  • Conference paper
  • First Online:
Evolvable Systems: From Biology to Hardware (ICES 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1478))

Included in the following conference series:

Abstract

The anatomy of the insect brain provides insights to neural architectures and visual processing algorithms which serve as blueprints for neuromimetic silicon chip designs. Selective attention reduces the amount of computation required by a biological system navigating through an information rich environment. In the insect visual system we see an example of task-specific sensor optimization for the detection of a topological invariant, the focus of expansion of the optic flow. A description of those regions of the optic lobe concerned with flow-field analysis is presented and this is followed by a description of a simple neural subsystem capable of detecting such a focus. This information is used in a feedback control system involving the peripheral sensors to gate object tracking and orienting systems. This robust and simple system is an ideal candidate for implementation in evolving silicon based vision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D., Yakoleff, A., Moini, A., Nguyen, X.T., Blanksby, A., Beare, R., Beaumont-SSmith, A. Kim, G., Bouzerdoum, A., Bogner, R.E., Eshraghi, K. (1995) Technology inspired obstacle avoidance — a technology independent program, Proc. SPIE, Int. Soc. Opt. Eng., 2591.

    Google Scholar 

  2. Bair, W. and Koch, C. (1989) Real-time motion detection using an analog VLSI zero-crossing chip. Proc. SPIE Visual Information Processing: From Neurons to Chips. Proc. SPIE, Vol 1473, pp. 59–65.

    Google Scholar 

  3. Buchner, E. (1976) Elementary movment detectors in an insect visual system, Biol. Cybern., 24: 85–101.

    Article  Google Scholar 

  4. Hausen, K. (1982a) Motion sensitive interneurons in the optomotor system of the fly I. The horizontal cells: structure and signals, Biol. Cybern., 45: 67–79.

    Article  Google Scholar 

  5. Hausen, K. (1982b) Motion sensitive interneurons in the optomotor system of the fly II. receptive field organization and response characteristics, Biol. Cybern., 46: 143–156.

    Article  Google Scholar 

  6. Hausen, K. (1984) The lobula complex of the fly: structure, function and significance in visual behaviour. In M.A. Ali (Ed.), Photoreception and vision in invertebrates, Plenum, New York and London, pp. 523–560.

    Google Scholar 

  7. Horridge, G.A. (1991) Ratios of template responses as the basis of semivision. Phil. Trans. Roy. Soc. London B, Vol. 331, pp 189–197.

    Google Scholar 

  8. Ibbotson, M.R., Maddess, T. and DuBois, R.A. (1991) A system of insect neurons sensitive to horizontal and vertical image motion connects medualla to midbrain, J. Comp Physiol A

    Google Scholar 

  9. Kirschfeld K (1972) The visual system of Musca: studies on structure and function. In: Wehner R. (ed) Information processing in the visual system of arthropods. Spinger, Berlin, pp 61–74.

    Google Scholar 

  10. Maddess, T., DuBois, R.A. and Ibbotson, M.R.(1991) Response properties and adaptation of neurons sensitive to image motion in the butterfly Papilio aegus, J. Comp Physiol A.

    Google Scholar 

  11. Meinertzhagen, L.A. and O’Neil S.D. (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster, J. Comp. Neurol., pp. 232–236.

    Google Scholar 

  12. Moorea, A. and Koch, C. (1991) A multiplication based motion detection chip. In: Visual Information Processing: From Neurons to Chips. Proc. SPIE, Vol 1473, pp. 66–75.

    Google Scholar 

  13. Strausfeld, N.J. (1982) Functional neuroanatomy of the blowfly’s visual system. In M. A. Ali (Ed.), Photoreception an dVision in Invertebrates, London New York: Plenum Press, pp. 483–522.

    Google Scholar 

  14. Strausfeld, N.J. (1989) Beneath the compound eye: neuroanatomical analysis and psychophysical correlates in the study of insect vision. In D.G. Stavenga and R.C Hardie (Eds.), Facets of Vision, Springer-Verlag, Berlin Heidelberg, pp. 360–390.

    Google Scholar 

  15. Tanner, J. and Mead, C. (1984) A correlating optical motion detector. Proc. Conferences on Advanced Research in VLSI, M.I.T., pp57–64.

    Google Scholar 

  16. Tanner, J. and Mead, C. (1986) An integrated analog optical motion sensor. In: VLSI Signal Processing II, pp.59–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Moshe Sipper Daniel Mange Andrés Pérez-Uribe

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

DuBois, R. (1998). A biologically inspired object tracking system. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds) Evolvable Systems: From Biology to Hardware. ICES 1998. Lecture Notes in Computer Science, vol 1478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057625

Download citation

  • DOI: https://doi.org/10.1007/BFb0057625

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64954-0

  • Online ISBN: 978-3-540-49916-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics