Advertisement

On nonlinear integral equations of Hammerstein type with unbounded linear mapping

  • Chaitan P. Gupta
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 384)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    BRÉZIS, H., équations et inéquations nonlinéiares dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) Vol.18, (1968), pp. 115–175.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    BRÉZIS, H., Inéquations variationelles assiciées à des opérateurs d' evolution, Theory and Applications of monotone operators, NATO Summer School, Venice, 1968, Oderisi Gubbio, pp. 1–10.Google Scholar
  3. [3]
    BRÉZIS, H., On some degenerate nonlinear parabolic equations, Proc. Sypos. Pure Math., Vol. 18, Amer. Math. Soc., Providence, R.I. (1970), pp. 28–38.Google Scholar
  4. [4]
    BRÉZIS, H., Nonlinear perturbations of monotone operators, Tech. Report No 25, Univ. of Kansas, Lawrence, Kansas (1972).Google Scholar
  5. [5]
    BROWDER, F.E., Non linear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., Vol. 18, Part 2, Amer. Math. Soc., Providence, R.I. (1970).Google Scholar
  6. [6]
    BROWDER, F.E., Nonlinear functional analysis and nonlinear integral equations of Hammerstein and Urysohn type, Contributions to Nonlinear Functional Analysis, edited by E.H. Zarantonello, pp. 425–500, Academic Press, New York, 1971.Google Scholar
  7. [7]
    BROWDER, F.E. and Gupta, C.P., Monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 75 (1969), pp. 1347–1353.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    BROWDER, F.E., D.G. de FIGUEIREDO and C.P.GUPTA, Maximal monotone operators and nonlinear integral equations of Hammerstein type, Bull. Amer. Math. Soc., 76 (1970), pp. 700–705.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    de FIGUEIREDO, D.G. and C.P.GUPTA, Nonlinear integral equations of Hammerstein type involving unbounded monotone, linnear mappings, Jour. Math. Anal. Appl., 39 (1972), pp. 37–48.CrossRefGoogle Scholar
  10. [10]
    de FIGUEIREDO, D.G. and C.P.GUPTA, Nonlinear integral equations of Hammerstein type with indefinite linear kernel in a Hilbert space, Indag. Math. 34 (1972), pp. 335–344.Google Scholar
  11. [11]
    de FIGUEIREDO, D.G. and C.P.GUPTA, On the variational method for the existence of solutions of nonlinear equations of Hammerstein type, Proc.A.M.S. 40 (1973), pp. 470–476.CrossRefGoogle Scholar
  12. [12]
    DOLPH, C.L. and G.J.MINTY, On nonlinear integral equations of Hammerstein type, Nonlinear integral equations, edited by P.M. Anselone, Univ. of Wisconsin Press (1964), pp. 99–154.Google Scholar
  13. [13]
    GUPTA, C.P., A new existence theorem for nonlinear integral equations of Hammerstein type involving unbounded linear mappings, (to appear), Proc. Synpos. on Analysis, Rio de Janeiro (1972), Actualités Sci. Ind., Hermann, Paris.Google Scholar
  14. [14]
    HAMMERSTEIN, A., Nichtlineare integralgleichungen nebst anwendungen, Acta Math., 54 (1930), pp. 117–176.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    KATO, T., Demi-continuity, hemi-continuity and monotonicity, Bull. Amer. Math. Soc., 70 (1964), pp. 548–550.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    KATO, T., Perturbation of nonlinear operators, Springer-Verlag, New York, 1966.Google Scholar
  17. [17]
    KENMOCHI, N., Existence theorems for certain nonlinean equations, Hiroshima Math. Jour., Vol. 1 (1971), pp. 435–443.MathSciNetzbMATHGoogle Scholar
  18. [18]
    KOLODNER, I., Equations of Hammerstein type in Hilbert spaces, J. Math. Mech., 13 (1964), pp. 701–750.MathSciNetzbMATHGoogle Scholar
  19. [19]
    KOSCIKII, M.E., Nonlinear equations of Hammerstein type with a monotone operator, Dokl. Akad. Nauk. USSR, 190 (1970) pp. 31–33 = Soviet Math. Dokl. IV (1970), pp. 25–28.Google Scholar
  20. [20]
    KRASNOSELSKII, M.A., Topological methods in the theory of non-linear integral equations, Pergamon Press, New York, 1964.Google Scholar
  21. [21]
    LAVRENTIEV, I.M., On the variational theory of nonlinear equations, Dokl. Akad. Nauk. USSR, 166 (1966), pp. 284–286 = Soviet Math. Dokl. 8 (1967), pp. 993–996.Google Scholar
  22. [22]
    LAVRENTIEV, I.M., Solvability of nonlinear equations, Dokl. Akad. Nauk. USSR, 175 (1967), pp. 1219–1221 = Soviet Math. Dokl., 8 (1967), pp. 993–996.Google Scholar
  23. [23]
    PETRYSHYN, W.V. and P.M.FITZPATRICK, New existence theorem for nonlinear equations of Hammerstein type, Transactions Amer. Math. Soc., 160 (1971), pp. 39–63.MathSciNetzbMATHGoogle Scholar
  24. [24]
    PHILLIPS, R.S., Dossipative operators and hyperbolic systems of partial differential equations, Transaction Amer. Math. Soc., 90 (1959), pp. 193–254.zbMATHCrossRefGoogle Scholar
  25. [25]
    ROCKAFELLAR, R.T., On the maximality of sums of nonlinear monotone operators, Transactions Amer. Math. Soc., 149 (1970), pp. 75–88.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    TRICOMI, F.G., Integral Equations, John-Wiley, New York.Google Scholar
  27. [27]
    VAINBERG, M., Variational methods for the study of nonlinear operators, Moscow, 1956. (Engl. transl. Holden-Day, San Francisco, 1964.)Google Scholar
  28. [28]
    VAINBERG, M., Nonlinear equations with potential and monotone operators, Dokl. Akad. Nauk. USSR, 183 (1968), pp. 747–749 = Soviet Math. Dokl. 9 (1968), pp. 1427–1430.MathSciNetGoogle Scholar
  29. [29]
    VAINBERG, M. and I.M.LAVRENTIEV, EquationA with monotonic and potential operators in Banach spaces, Dokl. Akad. Nauk., 187 (1969), pp. 711–714 = Soviet Math. Dokl., 10 (1969), pp. 907–910.Google Scholar
  30. [30]
    ZAANEN, A.C., Linear Analysis, North-Holland Publ. Co., Amsterdam, 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Chaitan P. Gupta
    • 1
  1. 1.Department of MathematicsNorthern Illinois UniversityDe KalbUSA

Personalised recommendations