The bounded case of the weighted approximation problem

  • W. H. Summers
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 384)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.BISHOP, A generalization of the Stone-Weierstrass theorem, Pacific J.Math. 11 (1961), 777–783.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    I.GLICKSBERG, Bishop's generalized Stont-Weierstrass theorem for the strict topology, Proc. Amer. Math. Soc. 14 (1963), 329–333.MathSciNetzbMATHGoogle Scholar
  3. [3]
    L.NACHBIN, On the weighted polynomial approximation in a locally compact space, Proc. Nat. Acad. Sci. 47 (1961), 1055–1057.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    L.NACHBIN, Weighted approximation over topological spaces and the Bernstein problem over finite dimensional vector spaces, Topology 3, Suppl. 1 (1964), 125–130.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    L.NACHBIN, Weighted approximation for algebras and modules of continuons functions: real and self-adjoint complex cases, Ann. of Math. 81 (1965), 289–302.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    L.NACHBIN, Elements of approximation theory, Van Nostrand, Princeton, NJ, 1967.zbMATHGoogle Scholar
  7. [7]
    L.NACHBIN, S.MACHADO, and J.B.PROLLA, Weighted approximation, vector fibrations, and algebras of operators, J.Math. Pures et Appl. 50 (1971), 299–323.MathSciNetGoogle Scholar
  8. [8]
    J.B.PROLLA, Bishop's generalized Stont-Weierstrass theorem for weighted spaces, Math. Ann. 191 (1971), 283–289.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    W.H.SUMMERS, Weighted spaces and weighted approximation, Séminaire d'Analyse Moderne, Université de Sherbrooke, Sherbrooke, PQ, No 3 (1970).zbMATHGoogle Scholar
  10. [10]
    W.H.SUMMERS, The general complex bounded case of the strict weighted approximation problem, Math. Ann. 192 (1971), 90–98.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    W.SUMMERS, Weighted approximation for modules of continuous functions, Bull. Amer. Math. Soc. 79 (1973), 386–388.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • W. H. Summers
    • 1
  1. 1.Department of MathematicsUniversity of ArkansasFayettevilleUSA

Personalised recommendations