Advertisement

Some recent results on topological vector spaces

  • M. A. Dostal
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 384)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ARENS, R., EELLS, J., On embedding uniform and topological spaces, Pacif. J. Math., 6 (1956), 397–403.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    BERENSTEIN, C.A., DOSTAL, M.A., “Analytically Uniform Spaces and their Applications to Convolution Equations”, Lect. Notes in Math., vol.256, Springer-Verlag, 1972.Google Scholar
  3. [3]
    BERENSTEIN, C.A., DOSTAL, M.A., On convolution equations I, “L'Analyse Harmonique dans le Domaine Complexe”, Lect. Notes Math., vol.336, Springer-Verlag, 1973, 79–94.Google Scholar
  4. [4]
    BOURBAKI, N., “éléments de Mathématiques”, Livre III, Topologie, Hermann, Paris, 1953–1961.Google Scholar
  5. [5]
    BOURBAKI, N., “éléments de Mathématiques”, Livre V, Espaces Vectoriels Topologiques, Hermann, Paris, 1953 & 1955.Google Scholar
  6. [6]
    BOURBAKI, N., “éléments de Mathématiques”, Livre VI, Intégration, Hermann, Paris, 1952–1963.Google Scholar
  7. [7]
    BROWDER, F.E., Functional analysis and partial differential equations 1, Math. Ann., 138 (1959), 55–79.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    BUCUR, I., DELEANU, A., with the collaboration of P. J. Hilton, “Introduction to the theory of categories and functors”, Wiley-Interscience, 1968.Google Scholar
  9. [9]
    COLLINS, H.S., Completeness and compactness in linear topological spaces, Trans. Amer. Math. Soc., 79 (1955), 256–280.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    COLLINS, H.S., Completeness, full completeness and k-spaces, Proc. Amer. Math. Soc, 6 (1955), 832–835.MathSciNetzbMATHGoogle Scholar
  11. [11]
    COLLINS, H.S., On the space ol (S), with the strict topology, Math. Z., 106 (1968), 361–373.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    DE WILDE, M., Sur un type particulier de limite inductive, Bull. Soc. Royale Sciences Liège, 35 (1966), 545–551.zbMATHGoogle Scholar
  13. [13]
    DE WILDE, M., Quelques theéorèmes d' extension de fonctionnelles linéaires, Bull. Soc. Royale Sciences Liège 35 (1966), 552–557.zbMATHGoogle Scholar
  14. [14]
    DE WILDE, M., Une propriété de relèvement des espaces à réseaux absorbants, C.R. Acad. Sc. Paris, Série A, 266 (1968), 457–459.zbMATHGoogle Scholar
  15. [15]
    DE WILDE, M., Réseaux dans les espaces linéaires à seminormes, Mém. Soc. Royale Sciences Liège, 18 (1969), 7–144.Google Scholar
  16. [16]
    DIEUDONNÉ, J., SCHWARTZ, L., La dualité, dans les espaces (F) et (LF), Ann. Inst. Fourier, 1 (1950), 61–101.CrossRefGoogle Scholar
  17. [17]
    DOSTAL, M.A., A complex characterization of the. Schwartz space D(Ω), Math. Ann., 195 (1972), 175–191.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    DOSTAL, M.A., On a class of complex λ-structures, to appear.Google Scholar
  19. [19]
    DULST, D. van, A note on B-and B r-completeness, Math. Ann., 197 (1972), 197–202.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    DULST, D. van, On the non-equivalence of B-and B r-completeness for strong duals of nuclear strict (LF)-spaces, to appear.Google Scholar
  21. [21]
    DULST, D. van, Pathology in D(Ω) and D′ (Ω), to appear.Google Scholar
  22. [22]
    EDWARDS, R.E., “Functional Analysis: Theory and Applications”, Holt, Rinehart and Winston, New York, 1965.zbMATHGoogle Scholar
  23. [23]
    EHRENPREIS, L., Solution of some problems of division III, Amer. Math. J., 78 (1956), 685–715.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    EHRENPREIS, L., Solution of some problems of division IV, Amer. Math. J., 82 (1960), 522–588.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    EHRENPREIS, L., “Fourier Analysis in Several Complex Variables”, Wiley-Interscience, London-New York, 1970.zbMATHGoogle Scholar
  26. [26]
    FIODOROVA, V.P., A dual characterization of the complete hull and completeness of a uniform space, Mat. Sbornik, 64 (1964), 631–639.Google Scholar
  27. [27]
    FOIAS, C., MARINESCU, G., Fonctionnelles linéaires dans les réunions dénombrables d'espaces de Banach réflexifs, C.R. Acad. Sc. Paris, Série A, 261 (1965), 4958–4960.MathSciNetzbMATHGoogle Scholar
  28. [28]
    FREYD, P., “Abelian Categories”, Harper & Row, New York-Evanston-London, 1964.zbMATHGoogle Scholar
  29. [29]
    GARNIR, H.G., DE WILDE, M., SCHMETS, J., “Analyse Fonctionnelle (Théorie constructive des espaces linéaires à seminormes)”, vol. I, BirkhÄuser-Verlag, Basel und Stuttgart, 1968.Google Scholar
  30. [30]
    GEILER, V.A., On projective objects in the category of locally convex spaces, Funkc. Analiz PriloŽ., 6 (1972), 79–80.MathSciNetGoogle Scholar
  31. [31]
    GROTHENDIECK, A., Sur la complétion du dual d'un espace vectoriel localement convexe, C.R. Acad. Sc. Paris, Série A, 230 (1950), 605–606.MathSciNetzbMATHGoogle Scholar
  32. [32]
    GROTHENDIECK, A., Sur les espaces (F) et (DF), Summa Bras. Math., 3 (1954), 57–123.MathSciNetGoogle Scholar
  33. [33]
    GROTHENDIECK, A., “Produits tensoriels topologiques et espaces nucléaires”, Memoirs Amer. Math. Soc, vol. 16, Providence, 1955.Google Scholar
  34. [34]
    HARVEY, Ch., HARVEY, F.R., Open mappings and the lack of fully completeness of D′(Ω), Bull. Amer. Math. Soc., 76 (1970). 786–790.MathSciNetGoogle Scholar
  35. [35]
    HÖRMANDER, L., On the range of convolution operators, Ann. of Math., 26 (1962), 148–170.CrossRefGoogle Scholar
  36. [36]
    HORVÁTH, J., “Topological Vector Spaces and Distributions”, Addison-Wesley, Reading, Mass., 1966.zbMATHGoogle Scholar
  37. [37]
    HUSAIN, T., “The Open Mapping and Closed Graph Theorems in Topological Vector Spaces”, Clarendon Press, Oxford, 1965.zbMATHGoogle Scholar
  38. [38]
    JOHN, K., Differentiable manifolds as topological lineal spaces, Math. Ann., 186 (1970), 177–190.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    JOHN, K., DOSTAL, M., Completion of certain λ-structures, Comment. Math. Univ. Carol., 7 (1966), 93–103.MathSciNetzbMATHGoogle Scholar
  40. [40]
    KAKUTANI, S., Concrete, representation of abstract (M)-spaces, Ann. of Math., 42 (1941), 994–1024.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    KANTOROVITCH, L.V., AKILOV, G.P., “Functional Analysis in Normed Spaces”, Pergamon Press, Oxford, 1964.Google Scholar
  42. [42]
    KASCIC, M.J., Jr., ROTH, B., A closed subspace of D (Ω) which is not an (LF)-space, Proc. Amer. Math. Soc, 24 (1970), 801–803.MathSciNetzbMATHGoogle Scholar
  43. [43]
    KASCIC, M.J., Jr., Functional analytic equivalences for P and strong P-convexity, to appear.Google Scholar
  44. [44]
    KATĚTOV, M., On a category of spaces, “Proc. First Symposium on General Topology, Prague 1961”, Prague, 1962, 226–229.Google Scholar
  45. [45]
    KATĚTOV, M., On certain projectively generated continuity structures, “Celebrazioni archimedee del secolo XX. Simposio di topologia”, 1964, 47–50.Google Scholar
  46. [46]
    KATĚTOV, M., Projectively genenated continuity struuctures: a correction, Comment. Math. Carol., 6 (1965), 251–255.Google Scholar
  47. [47]
    KELLEY, J.L., Hypercomplete linear topological spaces, Mich. Math. J., 5 (1958), 235–246.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    KELLEY, J.L., Banach spaces with the extension property, Trans. Amer. Math. Soc, 72 (1952), 323–326.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    KELLEY, J.L., NAMIOKA, I., and collab., “Linear Topological Spaces”, D, Van Nostrand, New York-London-Toronto, 1963.zbMATHGoogle Scholar
  50. [50]
    KÖTHE, G., Die QuotientenrÄume eines linearen volkommenen Raumes, Math. Z., 51 (1947), 17–35.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    KÖTHE, G., Hebbare lokalkonvexe RÄume, Math. Ann., 165 (1966), 181–195.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    KÖTHE, G., Fortisetzung linearer Abbildungen lokalkonvexen RÄume, Jahresb. D.M.V., 68 (1966), 193–204.zbMATHGoogle Scholar
  53. [53]
    KöTHE, G., “Topological Vector Spaces”, Springer-Verlag New York Inc., 1969.Google Scholar
  54. [54]
    KREIN, M., šMULIAN, V., On regularly convex sets in the space conjugate to a Banach space, Ann. of Math., 41 (1940), 556–583.MathSciNetCrossRefGoogle Scholar
  55. [55]
    MAKAROV, B.M., On inductive limits of normed spaces, Vest. Leningr. Univ., 13 (1965), 50–58.Google Scholar
  56. [56]
    MALGRANGE, B., Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955–1956), 271–355.MathSciNetCrossRefGoogle Scholar
  57. [57]
    MANES, E.G., C(X) as a dual space, Can. J. Math, 24 (1972), 485–491.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    MARKOV, A.A., On free topological groups, Dokl. AN SSSR, 31 (1941), 299–302.zbMATHGoogle Scholar
  59. [59]
    MARKOV, A.A., On free topological groups, Izv. AN SSSR, ser. mat., 9 (1945), 3–64.Google Scholar
  60. [60]
    MARTINEAU, A., Sur le théorème du graphe feré, C.R. Acad. Sc. Paris, Série A, 263 (1966), 870–871.MathSciNetzbMATHGoogle Scholar
  61. [61]
    MARTINEAU, A., Sur des théorèmes de S. Banach et L. Schwartz concernant le graphe fermé, Studia Math., 30 (1968), 43–51.MathSciNetzbMATHGoogle Scholar
  62. [62]
    MICHAEL, E., Three mapping theorems, Proc. Amer. Math. Soc., 15 (1964), 410–415.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    MICHAEL, E., A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc, 15 (1964), 415–416.MathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    NACHBIN, L., A theorem of Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc, 68 (1950), 28–46.MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    NACHBIN, L., Some problems in extending and lifting continuous linear tranformations, “Proc. Intern. Symposium Lin. Spaces, Jerusalem, 1960”, Jerusalem, 1961, 340–350.Google Scholar
  66. [66]
    PALAMODOV, V.P., The functor of projective limit in the. catagory of topological linear spaces, Mat. Sbornik, 75 (1968), 567–603.MathSciNetGoogle Scholar
  67. [67]
    PALAMODOV, V.P., Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk, 26 (1971), 3–65.MathSciNetGoogle Scholar
  68. [68]
    PIETSCH, A., “Nukleare lokalkonvexe RÄume”, Akademie-Verlag, Berlin, 1965.zbMATHGoogle Scholar
  69. [69]
    PTÁK, V., On complete topological linear spaces, čechosl. Mat. Z., 78 (1953), 301–364.Google Scholar
  70. [70]
    PTÁK, V., Weak compactness in convex topological vector spaces, Czechosl. Math. J., 79 (1954), 175–186.Google Scholar
  71. [71]
    PTÁK, V., Complzteness and the open mapping theorem, Bull. Soc. Math. France, 86 (1958), 41–74.MathSciNetzbMATHGoogle Scholar
  72. [72]
    PTÁK, V., A combinatorial lemma on the existence of convex means and its application to weak compactness, Proc. Symp. Pure Math., Amer. Math. Soc, 7 (1963), 437–450.CrossRefGoogle Scholar
  73. [73]
    PTÁK, V., Some open mapping theorems in LF-spaces and their application to existence theorems for convolution equations, Math. Scand., 16 (1965), 75–93.MathSciNetzbMATHGoogle Scholar
  74. [74]
    PTÁK, V., Algebraic extensions of topological spaces, “Contributions to extension theory of topological structures”, (Proceedings of the Symposium, Berlin 1967), Deutsche Verlag Wiss., 1969, 179–188.Google Scholar
  75. [75]
    PTÁK, V., Openness of linear mappings in LF-spaces, Czech. Math. J., 94 (1969), 547–552.Google Scholar
  76. [76]
    PTÁK, V., Simultaneous extensions of two functionals, Czech. Math. J., 19 (1969), 553–566.Google Scholar
  77. [77]
    PTÁK, V., Extension of sequentially continuous functionals of inductive limits of Banach spaces, Czech. Math. J., 95 (1970), 112–121.Google Scholar
  78. [78]
    RAIKOV, D.A., Free locally convex spaces of uniform spaces, Math. Sbornik, 63 (1964), 582–590.MathSciNetGoogle Scholar
  79. [79]
    RAIKOV, D.A., Double closed-graph theorem for topological linear spaces, Siber. Math. J., 7 (1966), 287–300.MathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    RAIKOV, D.A., Closed-graph and open-mapping theorems, Appendix 1 to the Russian edition of [86]“, Moscow, 1967.Google Scholar
  81. [81]
    RAIKOV, D.A., Some linear topological properties of spaces D and D′, Appendix 2 to the Russian edition of [86]“, Moscow, 1967.Google Scholar
  82. [82]
    RAIKOV, D.A., Semiabellian categories, Dokl. AN SSSR, 188 (1969), 1006–1009.MathSciNetGoogle Scholar
  83. [83]
    RETAKH, V.S., On the dual of a subspace of a countable inductive limit, Dokl. AN SSSR, 184 (1969), 44–46.Google Scholar
  84. [84]
    RETAKH, V.S., On subspaces of a countable inductive limit, Dokl. AN SSSR, 194 (1970), 1277–1279.Google Scholar
  85. [85]
    ROBERTSON, A.P., ROBERTSON, W., On the closed graph theorem, Proc. Glasgow Math. Assoc., 3 (1956), 9–12.MathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    ROBERTSON, A.P., ROBERTSON, W., “Topological Vector Spaces”, Cambridge Univ. Press, Cambridge — New York, 1964.zbMATHGoogle Scholar
  87. [87]
    ROBERTSON, W., Completion of topological vector spaces, Proc. Lond. Math. Soc, 8 (1958), 242–257.zbMATHCrossRefGoogle Scholar
  88. [88]
    ROBERTSON, W., On the closed graph theorem and spaces with webs, Proc. Lond. Math. Soc, 24 (1972), 692–738.zbMATHCrossRefGoogle Scholar
  89. [89]
    SCHAEFFER, H.H., “Topological Vector Spaces”, Mac Millan, New York, 1966.Google Scholar
  90. [90]
    SCHWARTZ, L., Sur le théorème du graphe fermé, C.R. Acad. Sc. Paris, Série A, 263 (1966), 602–605.zbMATHGoogle Scholar
  91. [91]
    SŁOWIKOWSKI, W., On continuity of inverse operators, Bull. Amer. Math. Soc, 67 (1961), 467–470.MathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    SŁOWIKOWSKI, W., Quotient spaces and the open mapping theorem, Bull. Amer. Math. Soc, 67 (1961), 498–500.MathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    SŁOWIKOWSKI, W., Fonctionnelles linéaires dans des réunions dénombrables d'espaces de Banach réflexifs, C.R. Acad. Sc Paris, Série A, 262 (1966), 870–872.zbMATHGoogle Scholar
  94. [94]
    SłOWIKOWSKI, W., “Epimorphisms of adjoints to generalized (LF)-spaces”, Aarhus Universitet, Matematisk Institut, Lecture Notes, 1966.Google Scholar
  95. [95]
    SŁOWIKOWSKI, W., Range of operators and regularity of solutions, Studia Math., 40 (1971), 183–198.MathSciNetzbMATHGoogle Scholar
  96. [96]
    SłOWIKOWSKI, W., On Hörmander's theorem about surjections of D′, to appear in Math. Scand.Google Scholar
  97. [97]
    SMOLJANOV, O.G., Almost closed linear subspaces of strict inductive limits of sequences of Fréchet spaces, Mat. Sbornik, 80 (1969), 513–520.MathSciNetGoogle Scholar
  98. [98]
    SUMMERS, W.H., Products of fully complete spaces, Bull. Amer. Math. Soc, 75 (1969), 1005.MathSciNetzbMATHCrossRefGoogle Scholar
  99. [99]
    SUNYACH, C., Sur le théorème du graphe fermée, “Séminaire P. Lelong (Analyse), 8e Année, 1967–1968”, Lect. Notes in Math., vol. 71, Springer-Verlag, 1968, 33–37.Google Scholar
  100. [100]
    TOMÁŠEK, S., On a theorem of M. KatĚtov, Comment. Math., Univ. Carol., 7 (1966), 105–108.zbMATHGoogle Scholar
  101. [101]
    TOMÁSEK, S., über eine lokalkonvexe Erweiterung von topologischen Produkten, “Contributions to extension theory of topological structures”, (Proceedings of the Symposium, Berlin, 1967), Deutsche Verlag. Wiss., 1969, 233–237.Google Scholar
  102. [102]
    TOMÁŠEK, S., Certain generalizations of the Katetov theorem, Comment. Math. Univ. Carol., 9 (1968), 573–581.zbMATHGoogle Scholar
  103. [103]
    TOMÁŠEK, S., On a certain class of λ-structures I, Czechosl. Math. J., 20 (1970), 1–17.CrossRefGoogle Scholar
  104. [104]
    TOMÁŠEK, S., On a certain class of λ-structures II, Czechosl. Math. J., 20 (1970), 19–33.Google Scholar
  105. [105]
    TRÈVES, F., “Linear Partial Differential Equations with Constant Coeficients”, Gordon & Breach, New York, 1966.Google Scholar
  106. [106]
    TRÈVES, F., “Topological Vector Spaces, Distributions and Kernels”, Acad. Press, New York and London, 1967.zbMATHGoogle Scholar
  107. [107]
    TRèVES, F., “Locally Convex Spaces and Linear Partial Differential Equations”, Springer-Verlag New York Inc., 1967.Google Scholar
  108. [108]
    SHAVGULIDZE Je. T., On the hypercompleteness of locally convex spaces, Mat. Zametki, 13 (1973), 297–302.MathSciNetGoogle Scholar
  109. [109]
    SMOLJANOV, O.G., The ipacz D is not hereditarily complete, Math. USSR Izvestija, 5 (1971), 696–710.CrossRefGoogle Scholar
  110. [110]
    SUMMERS, W.H., Full-completeness in weighted spaces, Can. J. Math., 22 (1970), 1196–1207.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • M. A. Dostal
    • 1
    • 2
  1. 1.Stevens Institute of TechnologyCastle Point StationHobokenUSA
  2. 2.Instituto de MatemáticaUniversidade Federal de PernambucoRecifeBrasil

Personalised recommendations