Constrained elastic surface nets: Generating smooth surfaces from binary segmented data

  • Sarah F. F. Gibson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)


This paper describes a method for creating object surfaces from binary-segmented data that are free from aliasing and terracing artifacts. In this method, a net of linked surface nodes is created over the surface of the binary object. The positions of the nodes are adjusted iteratively to reduce energy in the surface net while satisfying the constraint that each element in the surface net must remain within its original surface cube. This constraint ensures that fine detail such as cracks and thin protrusions that are present in the binary data are maintained.


Binary Data High Spatial Frequency Surgical Simulation Volumetric Model Marching Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Avila and L. Sobierajski. A haptic interaction method for volume visualization. In Proc. Visualization’96, pages 197–204. IEEE, 1996.Google Scholar
  2. 2.
    M. Bro-Nielsen and S. Cotin. Real-time volumetric deformable models for surgery simulation using finite elements and condensation. In Proc. Eurographics, volume 15, pages 57–66, 1996.Google Scholar
  3. 3.
    D. Chen and D. Zeltzer. Pump it up: computer animation of a biomechanically based model of muscle using the finite element method. In Proc. SIGGRAPH 92, pages 89–98., 1992.Google Scholar
  4. 4.
    M. Desbrun and M-P Gascuel. Animating soft substances with implicit surfaces. In Proc. SIGGRAPH 95, pages 287–290, 1995.Google Scholar
  5. 5.
    J. Foley, A. vanDam, S. Feiner, and J. Hughes. Computer Graphics: Principles and Practice. Addison-Wesley, 1992.Google Scholar
  6. 6.
    S. Gibson. 3D chainmail: a fast algorithm for deforming volumetric objects. In Proc. Symposium on Interactive 3D Graphics, pages 149–154. ACM SIGGRAPH, 1997.Google Scholar
  7. 7.
    S. Gibson. Calculating distance maps from binary segemented data. Technical Report WP98-01, MERL — A Mitsubishi Electric Research Laboratory, 1998.Google Scholar
  8. 8.
    S. Gibson. Linked volumetric objects for physics-based modeling. submitted to IEEE Trans. on Visualization and Computer Graphics, 1998.Google Scholar
  9. 9.
    S. Gibson. Using distance maps for accurate surface representation in sampled volumes. In Proc. Visualization’98. IEEE, 1998.Google Scholar
  10. 10.
    S. Gibson, C. Fyock, E. Grimson, T. Kanade, R. Kikinis, H. Lauer, N. McKenzie, A. Mor, S. Nakajima, H. Ohkami, R. Osborne, J. Samosky, and A. Sawada. Volumetric object modeling for surgical simulation. Medical Image Analysis, 2(2), 1998.Google Scholar
  11. 11.
    J.P. Gourret, N. Magnenat-Thalmann, and D. Thalmann. Simulation of object and human skin deformations in a grasping task. In Proc. SIGGRAPH 89, pages 21–30, 1989.Google Scholar
  12. 12.
    K. Hohne, M. Bomans, A. Pommert, M. Riemer, C. Schiers, U. Tiede, and G. Wiebecke. 3D visualization of tomographic volume data using the generalized voxel model. The Visual Computer, 6(1):28–36, February 1990.CrossRefGoogle Scholar
  13. 13.
    A. Kaufman. Volume Visualization. IEEE Computer Society Press, Los Alamitos, CA, 1991.Google Scholar
  14. 14.
    R. Koch, M. Gross, F. Carls, D. von Buren, G. Fankhauser, and Y. Parish. Simulating facial surgery using finite element models. In Proc. SIGGRAPH 96, pages 421–428, 1996.Google Scholar
  15. 15.
    Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial animation. In Proc. SIGGRAPH 95, pages 55–62., 1995.Google Scholar
  16. 16.
    W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface construction algorithm. In Proc. SIGGRAPH 87, pages 163–169, 1989.Google Scholar
  17. 17.
    S. Lu, D. Cui, R. Yagel, R. Miller, and G. Kinzel. A 3D contextual shading method for visualization of diecasting defects. In Proc. Visualization’96, pages 405–407. IEEE, 1996.Google Scholar
  18. 18.
    T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical Image Analysis, 1(2):91–108, 1996.CrossRefPubMedGoogle Scholar
  19. 19.
    A. Mor, S. Gibson, and J. Samosky. Interacting with 3-dimensional medical data: Haptic feedback for surgical simulation. In Proc. Phantom User Group Workshop’96, 1996.Google Scholar
  20. 20.
    I. Takanahi, S. Muraki, A. Doi, and A. Kaufman. 3D active net for volume extraction. In Proc. SPIE Electronic Imaging’98, pages 184–193, 1998.Google Scholar
  21. 21.
    D. Terzopoulos and K. Waters. Physically-based facial modeling, analysis, and animation. Journal of Visualization and Computer Animation, 1:73–80, 1990.CrossRefGoogle Scholar
  22. 22.
    G. Thurmer and C. Wurthrich. Normal computation for discrete surfaces in 3D space. In Proc. Eurographics’97, pages C15–C26, 1997.Google Scholar
  23. 23.
    S. Wang and A. Kaufman. Volume sampled voxelization of geometric primitives. In Proc. Visualization’93, pages 78–84. IEEE, 1993.Google Scholar
  24. 24.
    S. Wang and A. Kaufman. Volume-sampled 3D modeling. IEEE Computer Graphics and Applications, 14:26–32, 1994.CrossRefGoogle Scholar
  25. 25.
    R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer Graphics and Applications, 12:19–28, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sarah F. F. Gibson
    • 1
  1. 1.MERL - A Mitsubishi Electric Research LabCambridge

Personalised recommendations