Specification, modelling and visualization of arbitrarily shaped cut surfaces in the volume model

  • B. Pflesser
  • U. Tiede
  • K. H. Höhne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)


So far, exploration of volume models is limited to cut planes or addition/removal of segmented objects. More capable exploration techniques are needed in order to allow a ‘look and feel’ close to a real dissection. This is especially important for applications like the simulation of osteotomy surgery. Therefore, we have developed methods for free-form volume-sculpting operations which allow the interactive specification, representation and high-quality rendering of free form regions. The novelty of this approach is that these regions are represented within the generalized-voxel-model, together with a simulation of the partial-volume-effect, which allows a sub-voxel localization of cut surfaces. These techniques are implemented in our VOXEL-MAN visualization system, thus enhancing the exploration techniques for volume data. Furthermore, we developed an extended ray-casting algorithm for 3D-visualization of object motion with detection and visualization of interpenetrating volumes. These methods together provide a powerful tool for volume exploration and applications like the rehearsal of surgical interventions.


  1. 1.
    Arridge, S. R.: Manipulation of Volume Data for Surgical Simulation. In Höhne, K. H. et al. (Eds.): 3D-Imaging in Medicine: Algorithms, Systems, Applications, NATO ASI Series F 60, Springer-Verlag, Berlin, 1990, 289–300.CrossRefGoogle Scholar
  2. 2.
    Höhne, K. H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U., Wiebecke, G.: 3D-visualization of tomographic volume data using the generalized voxel-model. Visual Comput. 6, 1 (1990), 28–36.CrossRefGoogle Scholar
  3. 3.
    Höhne, K. H., Bomans, M., Riemer, M., Schubert, R., Tiede, U., Lierse, W.: A 3D anatomical atlas based on a volume model. IEEE Comput. Graphics Appl. 12, 4 (1992), 72–78.CrossRefGoogle Scholar
  4. 4.
    Keeve, E., Girod, S., Girod, B.: Craniofacial Surgery Simulation. In Höhne, K. H., Kikinis, R. (Eds.): Visualization in Biomedical Computing, Proc. VBC ’96, Lecture Notes in Computer Science 1131, Springer-Verlag, Berlin, 1996, 541–546.Google Scholar
  5. 5.
    Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., Parish, Y. I. H.: Simulating facial surgery using finite element models. In Proc. SIGGRAPH 96. New Orleans, LA, 1996, 421–428.Google Scholar
  6. 6.
    Pflesser, B., Tiede, U., Höhne, K. H.: Simulating motion of anatomical objects with volume-based 3D-visualization. In Robb, R. A. (Ed.): Visualization in Biomedical Computing 1994, Proc. SPIE 2359. Rochester, MN, 1994, 291–300.Google Scholar
  7. 7.
    Pflesser, B., Tiede, U., Höhne, K. H.: Towards realistic visualization for surgery rehearsal. In Ayache, N. (Ed.): Computer Vision, Virtual Reality and Robotics in Medicine, Proc. CVRMed ’95, Lecture Notes in Computer Science 905, Springer-Verlag, Berlin, 1995, 487–491.Google Scholar
  8. 8.
    Pommert, A., Schubert, R., Riemer, M., Schiemann, T., Tiede, U., Höhne, K. H.: Symbolic modeling of human anatomy for visualization and simulation. In Robb, R. A. (Ed.): Visualization in Biomedical Computing 1994, Proc. SPIE 2359. Rochester, MN, 1994, 412–423.Google Scholar
  9. 9.
    Reinig, K., Spitzer, V., Pelster, H., Johnson, T., Mahalik, T.: More Real-Time Visual and Haptic Interaction with Anatomical Data. In Morgan, K. et al. (Eds.): Medicine Meets Virtual Reality: Global Healthcare Grid, MMVR’97, Studies in Health Technology and Informatics 39, IOS Press, Amsterdam, 1997, 155–158.Google Scholar
  10. 10.
    Schiemann, T., Höhne, K. H.: Definition of volume transformations for volume interaction. In Duncan, J., Gindi, G. (Eds.): Information Processing in Medical Imaging, Proc. IPMI ’97, Lecture Notes in Computer Science 1230, Springer-Verlag, Berlin, 1997, 245–258.Google Scholar
  11. 11.
    Schubert, R., Höhne, K. H., Pommert, A., Riemer, M., Schiemann, T., Tiede, U., Lierse, W.: A new method for practicing exploration, dissection, and simulation with a complete computerized three-dimensional model of the brain and skull. Acta Anat. 150, 1 (1994), 69–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Spitzer, V., Ackerman, M. J., Scherzinger, A. L., Whitlock, D.: The Visible Human male: A technical report. J. Am. Med. Inf. Ass. 3, 2 (1996), 118–130.CrossRefGoogle Scholar
  13. 13.
    Tiede, U., Bomans, M., Höhne, K. H., Pommert, A., Riemer, M., Schiemann, T., Schubert, R., Lierse, W.: A computerized three-dimensional atlas of the human skull and brain. Am. J. Neuroradiology 14, 3 (1993), 551–559.Google Scholar
  14. 14.
    Tiede, U., Höhne, K. H., Bomans, M., Pommert, A., Riemer, M., Wiebecke, G.: Investigation of medical 3D-rendering algorithms. IEEE Comput. Graphics Appl. 10, 2 (1990), 41–53.CrossRefGoogle Scholar
  15. 15.
    Tiede, U., Schiemann, T., Höhne, K. H.: High quality rendering of attributed volume data. In Proc. IEEE Visualization ’98, IEEE Computer Society Press, 1998. (accepted for publication).Google Scholar
  16. 16.
    Udupa, J. K., Odhner, D.: Fast visualization, manipulation and analysis of binary volumetric objects. IEEE Comput. Graphics Appl. 11, 6 (1991), 53–62.CrossRefGoogle Scholar
  17. 17.
    Yasuda, T., Hashimoto, Y., Yokoi, S., Toriwaki, J.-L: Computer system for craniofacial surgical planning based on CT images. IEEE Trans. Med. Imaging MI-9, 3 (1990), 270–280.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. Pflesser
    • 1
  • U. Tiede
    • 1
  • K. H. Höhne
    • 1
  1. 1.Institute of Mathematics and Computer Science in Medicine (IMDM)University-Hospital EppendorfHamburgGermany

Personalised recommendations