Advertisement

Marching optimal-parameter ridges: An algorithm to extract shape loci in 3D images

  • Jacob D. Furst
  • Stephen M. Pizer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

This paper presents a method for identifying image loci that can be used as a basis for object segmentation and image registration. The focus is on 1D and 2D shape loci in 3D images. This method, called marching ridges, uses generalized height ridges, oriented medialness measures and a marching cubes like algorithm to extract optimal scale-orientation cores. This algorithm can can also be used for other image processing tasks such as finding intensity skeletons of objects and identifying object boundaries.

Keywords

marching ridges scale-space orientation medialness 

References

  1. 1.
    J. Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric Design, pages 341–355, 1988.Google Scholar
  2. 2.
    J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, November 1986.CrossRefGoogle Scholar
  3. 3.
    D. Eberly. Ridges in Image and Data Analysis. Computational Imaging and Vision Series. Kluwer Academic Publishers, Dordrecht, NL, 1996.CrossRefGoogle Scholar
  4. 4.
    D. Eberly and S. Pizer. Ridge flow models for image segmentation. In SPIE Proceedings on Mathematical Methods in Medical Imaging II, pages 54–64, 1994.Google Scholar
  5. 5.
    M. Fidrich. Iso-sruface extraction in 4d with applications related to scale space. Technical Report 2833, Institut National de Recherche en Informatique et en Automatique, March 1996.Google Scholar
  6. 6.
    D. S. Fritsch, S. M. Pizer, L. Yu, V. Johnson, and E. L. Chaney. Localization and segmentation of medical image objects using deformable shape loci. In H. H. Barrett and A. F. Gmitro, editors, Information Processing in Medical Imaging, Lecture Notes in Computer Science, pages 127–140. Springer-Verlag, 1997.Google Scholar
  7. 7.
    J. Furst, S. Pizer, and D. Eberly. Marching cores: a mehtod for extracting cores from 3d medical images. In Proceedings of the workshop on Mathematical Methods in Biomedical Image Analysis, pages 124–130. IEEE Computer Society Technical Committee on Pattern Analysis and Machine Intelligence, June 1996.Google Scholar
  8. 8.
    Jacob D. Furst, Robert S. Keller, Jason E. Miller, and Stephen M. Pizer. Image loci are ridges in geometric spaces. In Bart ter Haar Romeny, Luc Florack, Jan Koenderink, and Max Viergever, editors, Scale Space Theory in Computer Vision, Lecture Notes in Computer Science, pages 176–187. Springer-Verlag, 1997.Google Scholar
  9. 9.
    R. M. Haralick. Ridges and valleys on digital images. Computer Vision, Graphics, and Image Processing, 22:28–38, 1983.CrossRefGoogle Scholar
  10. 10.
    T. Lindeberg. Edge detection and ridge detection with automatic scale selection. Technical Report ISRN KTH/NA/P-96/06-SE, KTH (Royal Institute of Technology), 1996.Google Scholar
  11. 11.
    W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3d surface construction algorithm. Computer Graphics, 21(4):163–169, July 1987.CrossRefGoogle Scholar
  12. 12.
    B. S. Morse, S. M. Pizer, and A. Liu. Multiscale medial analysis of medical images. Proceedings on Information Processing in Medical Images, 687:112–131, 1993.Google Scholar
  13. 13.
    S. M. Pizer, D. Eberly, B. S. Morse, and D. S. Fritsch. Zoom-invariant vision of figural shape: The mathematics of cores. Computer Vision and Image Understanding, 1998. to appear.Google Scholar
  14. 14.
    S. M. Pizer, D. S. Fritsch, V. Johnson, and E. Chaney. Segmentation, registration and measurement of shape variation via image object shape, 1996. tutorial notes Visualization in Biomedical Computing.Google Scholar
  15. 15.
    Stephen M. Pizer, Daniel S. Fritsch, Kah-Chan Low, and Jacob D. Furst. 2d & 3d figural models of anatomic objects from medical images. In Proceedings of ISMM98, 1988. to appear.Google Scholar
  16. 16.
    J. Thirion and A. Gourdon. The marching lines algorithm: new results and proofs. Technical Report 1881, Institut National de Recherche en Informatique et en Automatique, April 1993.Google Scholar
  17. 17.
    Paul Yushkevich, Daniel Fritsch, Stephen Pizer, and Edward Chaney. Towards automatic, model-driven determination of 3d patient setup errors in conformal radiotherapy, 1998. Submitted to MICCAI98.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jacob D. Furst
    • 1
  • Stephen M. Pizer
    • 1
  1. 1.Medical Image Display and Analysis GroupUniversity of North CarolinaChapel Hill

Personalised recommendations