Advertisement

Initial in-vivo analysis of 3D heterogeneous brain computations for model-updated image-guided neurosurgery

  • Michael Miga
  • Keith Paulsen
  • Francis Kennedy
  • Jack Hoopes
  • Alex Hartov
  • David Roberts
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

Registration error resulting from intraoperative brain shift due to applied surgical loads has long been recognized as one of the most challenging problems in the field of frameless stereotactic neurosurgery. To address this problem, we have developed a 3-dimensional finite element model of the brain and have begun to quantify its predictive capability in an in vivo porcine model. Previous studies have shown that we can predict the average total displacement within 15% and 6.6% error using intraparenchymal and temporal deformation sources, respectively, under relatively simple model assumptions. In this paper, we present preliminary results using a heterogeneous model with an expanding temporally located mass and show that we are capable of predicting an average total displacement to 5.7% under similar model initial and boundary conditions. We also demonstrate that our approach can be viewed as having the capability of recapturing approximately 75% of the registration inaccuracy that may be generated by preoperative-based image-guided neurosurgery.

Keywords

Hydraulic Conductivity Balloon Catheter Total Displacement Heterogeneous Model Tissue Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. W. Roberts, J. W. Strohbehn, J. F. Hatch, W. Murray, and H. Kettenberger, ‘A frameless stereotactic integration of computerized tomographic imaging and the operating microscope’, J. Neurosurg., vol. 65, pp. 545–549, 1986.CrossRefPubMedGoogle Scholar
  2. 2.
    T. Peters, B. Davey, P. Munger, R. Comeau, A. Evans, and A. Olivier, ‘Three-dimensional multimodal image-guidance for neurosurgery’, IEEE Trans. Med. Imaging, vol. 15, pp. 121–128, 1996.CrossRefPubMedGoogle Scholar
  3. 3.
    D. W. Roberts, A. Hartov, F.E. Kennedy, M. I. Miga, K. D. Paulsen, ‘Intraoperative brain shift and deformation: a quantitative clinical analysis of cortical displacements in 28 cases’, Neurosurgery, (in press), 1998.Google Scholar
  4. 4.
    D. L. G. Hill, C. R. Maurer, M. Y. Wang, R. J. Maciunas, J. A. Barwise, J. M. Fitzpatrick, ‘Estimation of intraoperative brain surface movement’, Proc. CVRMed-MRCAS’97, ed. J. Troccaz, E. Grimson, R. Mosges, Springer Lecture Notes in Computer Science, vol. 1205, pp. 449–458, 1997.Google Scholar
  5. 5.
    H. Dickhaus, K. Ganser, A. Staubert, M. M. Bonsanto, C. R. Wirtz, V. M. Tronnier, and S. Kunze, ‘Quantification of brain shift effects by mr-imaging’, Proc. An. Int. Conf. IEEE Eng. Med. Biology Soc., 1997.Google Scholar
  6. 6.
    M. I. Miga, K. D. Paulsen, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘A 3D brain deformation model experiencing comparable surgical loads’, Proc. 19th An. Int. Conf. IEEE Eng. Med. Biology Soc., 773–776, 1997.Google Scholar
  7. 7.
    K. D. Paulsen, M. I. Miga, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery’, IEEE Transactions on Biomedical Engineering, (in press), (1998).Google Scholar
  8. 8.
    M. I. Miga, K. D. Paulsen, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘Quantification of a 3D brain deformation model experiencing a temporal mass expansion’, Proceedings of the 24th IEEE Northeast Bioengineering Conference, pp. 68–71, 1998.Google Scholar
  9. 9.
    M. Biot, ‘General theory of three dimensional consolidation’, J. Appl. Phys., vol. 12, pp. 155–164, 1941.CrossRefGoogle Scholar
  10. 10.
    M. I. Miga, K. D. Paulsen, F. E. Kennedy, ‘Von Neumann stability analysis of Biot’s general two-dimensional theory of consolidation’, Int. J. of Num. Methods in Eng., (in press), 1998.Google Scholar
  11. 11.
    E. K. Walsh, and A. Schettini, ‘Calculation of brain elastic parameters in vivo’, Am. J. Physiol., 247, R693–R700, 1984.PubMedGoogle Scholar
  12. 12.
    R. Mathupillai, P. J. Rossman, D. J. Lomas, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, ‘Magnetic resonance elastography by direct visualization of propagating acoustic strain waves’, Science, vol. 269, pp. 1854–1857, 1995.CrossRefGoogle Scholar
  13. 13.
    M. I. Miga, K. D. Paulsen, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts, ‘Modeling Surgical Loads to Account for Subsurface Tissue Deformation During Stereotactic Neurosurgery’, IEEE SPIE Proceedings of Laser-Tissue Interaction IX, Part B: Soft-tissue Modeling, vol. 3254, pp. 501–511, 1998.CrossRefGoogle Scholar
  14. 14.
    T. Nagashima, T. Shirakuni, and S. I. Rapoport, ‘A two-dimensional, finite element analysis of vasogenic brain edema,’ Neurol. Med. Chir., vol. 30, pp. 1–9, 1990.CrossRefGoogle Scholar
  15. 15.
    P. J. Basser, ‘Interstitial pressure, volume, and flow during infusion into brain tissue’, Microvasc. Res., vol. 44, pp. 143–165, 1992.CrossRefPubMedGoogle Scholar
  16. 16.
    C. Montani, R. Scateni, and R. Scopigno, ‘Discretized Marching Cubes Visualization 1994’, Conf. Proc., Washington, 1994.Google Scholar
  17. 17.
    J. M. Sullivan Jr., G. Charron, and K. D. Paulsen, ‘A three dimensional mesh generator for arbitrary multiple material domains, Finite Element Analysis and Design, vol. 25, pp. 219–241, 1997.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Michael Miga
    • 1
  • Keith Paulsen
    • 1
    • 2
    • 3
  • Francis Kennedy
    • 1
  • Jack Hoopes
    • 1
    • 2
    • 3
  • Alex Hartov
    • 1
    • 2
  • David Roberts
    • 2
    • 3
  1. 1.Thayer School of EngineeringDartmouth CollegeHanover
  2. 2.Dartmouth Hitchcock Medical CenterLebanon
  3. 3.Norris Cotton Cancer CenterLebanon

Personalised recommendations