A biomechanical model of the human tongue and its clinical implications

  • Yohan Payan
  • Georges Bettega
  • Bernard Raphaël
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)


Many surgical technics act on the upper airway in general, and on the tongue in particular. For example, tongue is one of the anatomical structures involved in the case of Pierre Robin syndrome, mandibular prognathism, or sleep apnoea syndrome.

This paper presents the biomechanical and dynamical model of the human tongue we have developed, and the method we have used to fit this model to the anatomical and physical properties of a given patient’s tongue. Each step of the modeling process is precisely described: the soft tissues modeling through the Finite Element Method (geometrical design of the FE structure within the upper airway and representation of lingual musculature), and the motor control of the model with the corresponding dynamical simulations. Finally, the syndromes listed above are presented, with some focus on the clinical implications of the model.


Biomechanical Model Tongue Movement Tongue Muscle Human Tongue Mandibular Prognathism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Bell. Modern practice in orthognathic and reconstructive surgery, volume 3. WB Saunders company, Philadelphia, 1992.Google Scholar
  2. 2.
    K. Bunton and G. Weismer. Evaluation of a reiterant force-impulse task in the tongue. Journal of Speech and Hearing Research, 37:1020–1031, 1994.CrossRefPubMedGoogle Scholar
  3. 3.
    W.R Burston. Neonatal surgery, chapter Mandibular retrognathia. Rickham P.P. and Johnston J.H. eds, London, 1969.Google Scholar
  4. 4.
    J. Delaire. la langue et dysmorphie, chapter la langue et dysmorphie, page 81. Masson, Paris, 1996.Google Scholar
  5. 5.
    R.P Delorme, Y. Laroque, and L. Caouette-Laberge. Innovative surgical approach for the pierre robin anomalad: subperiostal release of the floor of the mouth musculature. Plast. Reconstr. Surg., 83:960–64, 1989.CrossRefPubMedGoogle Scholar
  6. 6.
    F.A. Duck. Physical properties of tissues: a comprehensive reference book. Academic Press, London, 1990.Google Scholar
  7. 7.
    A.G. Feldman. Once more on the equilibrium-point hypothesis (λ model) for motor control. Journal of Motor Behavior, 18(1):17–54, 1986.CrossRefPubMedGoogle Scholar
  8. 8.
    R. Fodil, C. Ribreau, B. Louis, F. Lofaso, and D. Isabey. Interaction between steady flow and individualised compliant segments: application to upper airways. Medical & Biological Engineering & Computing, November 1997.Google Scholar
  9. 9.
    K. Honda. Organization of tongue articulation for vowels. Journal of Phonetics, 24:39–52, 1996.CrossRefGoogle Scholar
  10. 10.
    Y. Min, I. Titze, and F. Alipour. Stress-strain response of the human vocal ligament. NCVS Status and Progress, 7:131–137, 1994.Google Scholar
  11. 11.
    F.H Netter. Atlas of human anatomy. Technical report, CIBA-GEIGY Corporation editor, 1989.Google Scholar
  12. 12.
    Y. Payan and P. Perrier. Synthesis of v-v sequences with a 2d biomechanical tongue model controlled by the equilibrium point hypothesis. Speech Communication, 22(2–3): 185–205, 1997.CrossRefGoogle Scholar
  13. 13.
    J.L Pépin, D. Veale, and G. Ferreti. Evaluation of the upper airway in sleep apnea syndrome. Sleep, 15:s50–s55, 1992.PubMedGoogle Scholar
  14. 14.
    J.S Perkell. A physiologically-oriented model of tongue activity in speech production. PhD thesis, Massachusetts Institute of Technology, Boston, 1974.Google Scholar
  15. 15.
    P. Robin. La glossoptose. Un grave danger pour nos enfants. Doin ed., Paris, 1929.Google Scholar
  16. 16.
    P.L. Smith, R.A. Wise, A.R. Gold, A.R. Schwarts, and S. Permutt. Upper airway pressure-flow relationship in obstructive slepp apnea. J. Appl. physiol, 64:789–795, 1998.Google Scholar
  17. 17.
    M. Stricker, J. Van Der Meulen, B. Raphael, and R. Mazzola. Craniofacial malformations. Churchill Linvingstone ed., Churchill Linvingstone, Edingburgh, 1990.Google Scholar
  18. 18.
    R. Wilhelms-Tricarico. Physiological modeling of speech production: Methods for modeling soft-tissues articulators. J. Acoust. Soc. of Am., 97(5):3085–3098, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Yohan Payan
    • 1
  • Georges Bettega
    • 1
    • 2
  • Bernard Raphaël
    • 2
  1. 1.Faculté de MédecineLaboratoire TIMC/IMAG - UMR CNRS 5525La TroncheFrance
  2. 2.Service de Chirurgie Plastique et Maxillo-FacialeCentre Hospitalier Universitaire de GrenobleFrance

Personalised recommendations