Advertisement

Visualizing spatial resolution of linear estimation techniques of electromagnetic brain activity localization

  • Arthur K. Liu
  • John W. Belliveau
  • Anders M. Dale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

Various linear methods have been proposed to localize brain activity from external electromagnetic measurements. When interpreting the estimated spatiotemporal localizations, one must consider the spatial resolution of the particular approach. Locations with high spatial resolution increase the confidence of the estimates, whereas locations with poor resolution provide less useful localization estimates. We describe a “crosstalk” metric which provides a quanitative measurement of distortion at a given location from other locations within the brain. Crosstalk maps over the entire cortical surface provide a useful visualization of the spatial resolution of the inverse method.

Keywords

Cortical Surface Dipole Strength Dipole Component Forward Solution Magnetic Source Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Backus, G.E., F. Gilbert: Geophysical Journal of the Royal Astonomical Society. 16 (1968) 169–205CrossRefGoogle Scholar
  2. 2.
    Backus, G.E., F. Gilbert: Philosophical Transactions of the Royal Society of London A. 266 (1970) 123–192CrossRefGoogle Scholar
  3. 3.
    Dale, A.M.: Source Localization and Spatial Discriminant Analysis of Event-Related Potentials: Linear Approaches. Ph.D. Thesis UCSD (1994).Google Scholar
  4. 4.
    Dale, A.M., M.I. Sereno: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. J. Cog. Neurosci. 5 (1993) 162–176CrossRefGoogle Scholar
  5. 5.
    de Munck, J.C.: A linear discretization of the volume conductor boundary integral equation using analytically integrated elements. IEEE Trans. Biomed. Eng. 39 (1992) 986–990CrossRefPubMedGoogle Scholar
  6. 6.
    Deutsch, R.: Estimation Theory. Prentice Hall Englewood Cliffs, NJ (1965)Google Scholar
  7. 7.
    Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge (1974).Google Scholar
  8. 8.
    Grave de Peralta Menendez, R., S. Gonzalez Andino, B. Lutkenhoner: Figures of merit to compare linear distributed inverse solutions. Brain Topography. 9 (1996) 117–124CrossRefGoogle Scholar
  9. 9.
    Hamalainen, M., R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa: Magnetoencephalography — theory, instrumentation, and application to noninvasive studies of the working human brain. Review of Modern Physics. 65 (1993) 413–497CrossRefGoogle Scholar
  10. 10.
    Hamalainen, M.S., R.J. Ilmoniemi: Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univ. of Technology Helsinki, Finland (1984)Google Scholar
  11. 11.
    Hamalainen, M.S., J. Sarvas: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 36 (1989) 165–171CrossRefPubMedGoogle Scholar
  12. 12.
    Helmholtz, H.: Ueber einige Gesetze der Vertheilung elektrischer Strome in korperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann. Phys. Chem. 89 (1853) 211–233, 353–377CrossRefGoogle Scholar
  13. 13.
    Ilmoniemi, R.J.: Magnetoencephalography-A tool for studies of information processing in the human brain. In: Lubbig, H. (ed.): The Inverse Problem. Akademie Verlag, Berlin (1995) 89–106Google Scholar
  14. 14.
    Knuutila, J.E.T., A.I. Ahonen, M.S. Hamalainen, M.J. Kajola, P.O. Laine, O.V. Lounasmaa, L.T. Parkkonen, J.T.A. Simola, C.D. Tesche: A 122-channel whole-cortex squid system for measuring the brains magnetic fields. IEEE Trans. Magn. 29 (1993) 3315–3320CrossRefGoogle Scholar
  15. 15.
    Lutkenhoner, B., R. Grave de Peralta Menendez: The resolution-field concept. EEG and Clin. Neurophysiol. 102 (1997) 326–334CrossRefGoogle Scholar
  16. 16.
    Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic Press San Diego, CA (1989)Google Scholar
  17. 17.
    Nunez, P.L.: Electric fields of the brain. Oxford University Press New York (1981)Google Scholar
  18. 18.
    Oostendorp, T.F., A. van Oosterom. “Source parameter estimation using realistic geometry in bioelectricity and biomagnetism.” Biomagnetic Localization and 3D Modeling, Report TKK-F-A689. Nenonen, Rajala and Katila ed. Helsinki University of Technology. Helsinki. (1992)Google Scholar
  19. 19.
    Pascual-Marqui, R.D., C.M. Michel, D. Lehmann: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Inter J Psychophysiology. 18 (1994) 49–65CrossRefGoogle Scholar
  20. 20.
    Plonsey, R.: Bioelectric Phenomena. McGraw-Hill, New York (1969)Google Scholar
  21. 21.
    Sereno, M.I., A.M. Dale, J.B. Reppas, K.K. Kwong, J.W. Belliveau, T.J. Brady, B.R. Rosen, R.B.H. Tootell: Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 268 (1995) 889–893CrossRefPubMedGoogle Scholar
  22. 22.
    Tichonov, A.N., V.Y. Arsenin: Solutions of ill-posed problems. Winston, English translation by F. John Washington D.C. (1977)Google Scholar
  23. 23.
    Tootell, R.B.H., J.D. Mendola, N.K. Hadjikhani, P.J. Ledden, A.K. Liu, J.B. Reppas, M.I. Sereno, A.M. Dale: Functional analysis of V3A and related areas in human visual cortex. J Neuroscience. 17 (1997) 7060–7078PubMedGoogle Scholar
  24. 24.
    Wang, J.-Z., S.J. Williamson, L. Kaufman: Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans.Biomed.Eng. 39 (1992) 665–675CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Arthur K. Liu
    • 1
  • John W. Belliveau
    • 1
  • Anders M. Dale
    • 1
  1. 1.Massachusetts General Hospital NMR CenterCharlestown

Personalised recommendations