Automatic computation of average brain models

  • Alexandre Guimond
  • Jean Meunier
  • Jean -Philippe Thirion
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)


We present a completely automatic method to build average anatomical models of the human brain using a set of MR images. The models computed present two important characteristics: an average intensity and an average shape. We provide results showing convergence toward the barycenter of the image set used for the computation of the model.


Root Mean Square Average Model Reference Image Affine Transformation Residual Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ruzena Bajcsy and S. Kovacic. Multiresolution elastic matching. Computer Vision, Graphics and Image Processing, 46(1):1–21, April 1989.CrossRefGoogle Scholar
  2. 2.
    Fred L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, June 1989.CrossRefGoogle Scholar
  3. 3.
    Fred L. Bookstein. Thin-plate splines and the atlas problem for biomedical images. In Information Processing in Medical Imaging, volume 511 of Lecture Notes in Computer Science, pages 326–342, Wye, United Kingdom, July 1991.CrossRefGoogle Scholar
  4. 4.
    Fred L. Bookstein. Shape and the information in medical images: A decade of the morphometric synthesis. Computer Vision and Image Understanding, 66(2):97–118, may 1997.CrossRefGoogle Scholar
  5. 5.
    M.E. Brummer, R.M. Mersereau, R.L. Eisner, and R.R.J. Lewine. Automatic detection of brain contours in MRI data sets. IEEE Transactions in Medical Imaging, 12(2):153–166, June 1993.CrossRefGoogle Scholar
  6. 6.
    Gary Christensen, Richard D. Rabbitt, and Michael I. Miller. 3D brain mapping using a deformable neuroanatomy. Physics in Medecine and Biology, 39:608–618, March 1994.Google Scholar
  7. 7.
    D. Louis Collins, Terry M. Peters, and Alan C. Evans. An automated 3D non-linear image deformation procedure for determination of gross morphometric variability in human brain. In Visualisation in Biomedical Computing, volume 2359 of SPIE Proceedings, pages 180–190, Rochester, October 1994.CrossRefGoogle Scholar
  8. 8.
    Alan C. Evans, D. Louis Collins, S. R. Mills, E. D. Brown, R. LO. Kelly, and Terry M. Peters. 3D statistical neuroanatomical models from 305 MRI volumes. In IEEE Nuclear Science Symposium/Medical Imaging Conference, pages 1813–1817, 1993.Google Scholar
  9. 9.
    Alexandre Guimond, Gérard Subsol, and Jean-Philippe Thirion. Automatic MRI database exploration and applications. International Journal of Pattern Recognition and Artificial Intelligence, 11(8):1345–1365, December 1997.CrossRefGoogle Scholar
  10. 10.
    Karl Heinz Höhne, Michael Bomans, Martin Riemer, Rainer Schubert, Ulf Tiede, and Werner Lierse. A volume-based anatomical atlas. IEEE Computer Graphics and Applications, pages 72–78, July 1992.Google Scholar
  11. 11.
    David G. Kendall. A survey of the statistical theory of shape. Statistical Science, 4(2):87–120, 1989.CrossRefGoogle Scholar
  12. 12.
    Eduard Pernkopf. Atlas d’anatomie humaine. Piccin, 1983.Google Scholar
  13. 13.
    Gérard Subsol, Jean-Philippe Thirion, and Nicholas Ayache. A general scheme for automatically building 3D morphometric anatomical atlases: applications to a skull atlas. In Medical Robotics and Computer Aided Surgery, pages 373–382, Baltimore, November 1995.Google Scholar
  14. 14.
    Jean Talairach and Pierre Tournoux. Co-Planar Stereotaxic Atlas of the Human Brain. Thieme Medical Publishers, New York, United-States, 1988.Google Scholar
  15. 15.
    Jean-Philippe Thirion. Fast non-rigid matching of 3D medical images. In Medical Robotics and Computer Aided Surgery, pages 47–54, Baltimore, November 1995.Google Scholar
  16. 16.
    P. Thompson and A. W. Toga. A surface-based technique for warping 3-dimensional images of the brain. IEEE Transactions in Medical Imaging, 15:1–16, 1996.CrossRefGoogle Scholar
  17. 17.
    Paul M. Thompson and Arthur W. Toga. Detection, visualization and animation of abnormal anatomic structure with a deformable probabilistic brain atlas based on random vector field transformations. Medical Image Analysis, 1(4):271–294, September 1997.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alexandre Guimond
    • 1
    • 2
  • Jean Meunier
    • 2
  • Jean -Philippe Thirion
    • 1
  1. 1.Epidaure Project 2004INRIA Sophia AntipolisFrance
  2. 2.Département d’informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations