Advertisement

Building biomechanical models based on medical image data: An assessment of model accuracy

  • Wendy M. Murray
  • Allison S. Arnold
  • Silvia Salinas
  • Mahidhar M. Durbhakula
  • Thomas S. Buchanan
  • Scott L. Delp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

The goals of this work were to (i) establish a method for building subject-specific biomechanical models from medical image data, (ii) construct a subject-specific model of the elbow, and (iii) quantify the accuracy of soft tissue excursions estimated from the model. We developed a kinematic model of the elbow joint and its surrounding musculature from magnetic resonance images of a 6′4′’ male cadaver specimen in one limb position. Moment arms estimated from the model (i.e., the changes in muscle-tendon lengths with elbow flexion angle) were compared to moment arms measured experimentally from the same specimen. In five of the six muscles studied, the model explained 84%–94% of the variation in the experimental data. Model estimates of peak elbow flexion moment arm were within 13% of the experimental peaks. Our results suggest that subject-specific musculoskeletal models derived from medical image data have the potential to substantially improve estimates of soft tissue excursions in living subjects.

Keywords

Root Mean Square Error Elbow Joint Elbow Flexion Trochlear Groove Male Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Delp, S. L., Ringwelski, D. A. and Carroll, N. C. (1994) Transfer of the rectus femoris: Effects of transfer site on moment arms about the knee and hip. J Biomech 27, 1201–1211CrossRefPubMedGoogle Scholar
  2. 2.
    Murray, W. M., Delp, S. L. and Buchanan, T. S. (1995) Variation of muscle moment arms with elbow and forearm position. J Biomech 28, 513–525CrossRefPubMedGoogle Scholar
  3. 3.
    Arnold, A. S., Komattu, A. V. and Delp, S. L. (1997) Internal rotation gait: a compensatory mechanism to restore abduction capacity decreased by bone deformity. Dev Med Child Neurol 39, 40–44CrossRefPubMedGoogle Scholar
  4. 4.
    Delp, S. L., Arnold, A. S., Speers, R. A. and Moore, C. A. (1996) Hamstrings and psoas lengths during normal and crouch gait: Implications for muscle-tendon surgery. J Orthop Res 14, 144–151CrossRefPubMedGoogle Scholar
  5. 5.
    Scott, S. H., Engstrom, C. M. and Loeb, G. E. (1993) Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat 182, 249–257PubMedPubMedCentralGoogle Scholar
  6. 6.
    Smith, D. K., Berquist, T. H., An, K. N., Rob, R. A. and Chao, E. Y. S. (1989) Validation of three-dimensional reconstructions of knee anatomy: CT vs MR Imaging. Journal of Computer Assisted Tomography 13, 294–301CrossRefPubMedGoogle Scholar
  7. 7.
    An, K. N., Takahasi, K., Harrigan, T. P. and Chao, E. Y. (1984) Determination of muscle orientations and moment arms. J Biomech Eng 106, 280–282CrossRefPubMedGoogle Scholar
  8. 8.
    Veldpaus, F. E., Woltring, H. J. and Dortmans, L. J. (1988) A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. J Biomech 21, 45–54CrossRefPubMedGoogle Scholar
  9. 9.
    Chao, E. Y. and Morrey, B. F. (1978) Three-dimensional rotation of the elbow. J Biomech 11, 57–73CrossRefPubMedGoogle Scholar
  10. 10.
    Gerbeaux, M., Turpin, E. and Lensel-Corbeil, G. (1996) Musculo-articular modelling of the triceps brachii. J Biomech 29, 171–180CrossRefPubMedGoogle Scholar
  11. 11.
    London, J. T. (1981) Kinematics of the elbow. J Bone Joint Surg 63-A, 529–535CrossRefGoogle Scholar
  12. 12.
    Shiba, R., Sorbie, C., Siu, D. W., Bryant, J. T., Derek, T., Cooke, V. and Wevers, H. W. (1988) Geometry of the humeroulnar joint. J Orthop Res 6, 897–906CrossRefPubMedGoogle Scholar
  13. 13.
    Murray, W. M. (1997) The functional capacity of the elbow muscles: Anatomical measurements, computer modeling, and anthropometric scaling. Ph.D. Dissertation Northwestern University, Evanston, ILGoogle Scholar
  14. 14.
    Delp, S. L. and Loan, J. P. (1995) A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput Biol Med 25, 21–34CrossRefPubMedGoogle Scholar
  15. 15.
    Delp, S. L. and Zajac, F. E. (1992) Force-and moment-generating capacity of lower-extremity muscles before and after tendon lengthening. Clin Orthop 284, 247–259Google Scholar
  16. 16.
    An, K. N., Hui, F. C., Morrey, B. F., Linscheid, R. L. and Chao, E. Y. (1981) Muscles across the elbow joint: A biomechanical analysis. J Biomech 14, 659–669CrossRefPubMedGoogle Scholar
  17. 17.
    Amis, A. A., Dowson, D. and Wright, V. (1979) Muscle strengths and musculo-skeletal geometry of the upper limb. Eng Med 8, 41–47CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Wendy M. Murray
    • 1
  • Allison S. Arnold
    • 2
  • Silvia Salinas
    • 2
  • Mahidhar M. Durbhakula
    • 2
  • Thomas S. Buchanan
    • 3
  • Scott L. Delp
    • 2
  1. 1.Biomedical Engineering DepartmentCase Western Reserve University & Rehabilitation Engineering Center, MetroHealth Medical CenterClevelandUSA
  2. 2.Departments of Biomedical Engineering and Physical Medicine & RehabilitationNorthwestern University & Sensory Motor Performance Program, Rehabilitation Institute of ChicagoChicagoUSA
  3. 3.Mechanical Engineering DepartmentUniversity of DelawareNewarkUSA

Personalised recommendations