Advertisement

Regularization of MR diffusion tensor maps for tracking brain white matter bundles

  • C. Poupon
  • J. -F. Mangin
  • V. Frouin
  • J. Régis
  • F. Poupon
  • M. Pachot-Clouard
  • D. Le Bihan
  • I. Bloch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

We propose a new way for tracking brain white matter fiber bundles in diffusion tensor maps. Diffusion maps provide information about mobility of water protons in different directions. Assuming that diffusion is more important along axons, this information could lead to the direction of fiber bundles in white matter. Nevertheless, protocoles for diffusion image acquisition suffer from low resolutions and instrument noise. This paper is essentially dedicated to the design of a Markovian model aiming at the regularization of direction maps, and at the tracking of fiber bundles. Results are presented on synthetic tensor images to confirm the efficiency of the method. Then, white matter regions are regularized in order to enable the tracking of fiber bundles, which is of increasing interest in functional connectivity studies.

Keywords

White Matter Corpus Callosum Diffusion Tensor Imaging Fiber Bundle Markovian Random Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Naf, O. Kubler, R. Kikinis, M.E. Shenton, and G. Szekely. Characterization and Recognition of 3D Organ Shape in Medical Image Analysis Using Skeletonization. In IEEE/SIAM, editor, IEEE/SIAM Workshop on Mathematical Methods m Biomedical Image Analysis, 1996, pp. 139–150.Google Scholar
  2. 2.
    J.F. Mangin, J. Régis, and V. Frouin. Shape bottlenecks and conservative flow systems. In IEEE/SIAM, editor, IEEE/SIAM Workshop on Mathematical Methods in Biomedical Image Analysis, 1996, pp. 319–328.Google Scholar
  3. 3.
    D.C. Van Essen. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, vol. 385, 1997, pp. 313–318.CrossRefPubMedGoogle Scholar
  4. 4.
    D. Le Bihan. Molecular Diffusion Nuclear Magnetic Resonance Imaging. Magnetic Resonance Quaterly, vol. 7, no. 1, 1991, pp. 1–30.Google Scholar
  5. 5.
    D. Le Bihan. Diffusion and Perfusion Magnetic Resonance Imaging, chapter A-2-IV, pp. 50–57. Raven Press, Ltd., New-York, 1995.Google Scholar
  6. 6.
    C. Pierpaoli, P. Jezzard, P.J. Basser, A. Barnett, and G. Di Chiro. Diffusion Tensor MR Imaging of the Human Brain. Radiology, vol. 201, 1996, pp. 637–648.CrossRefPubMedGoogle Scholar
  7. 7.
    J. Mattiello, P.J. Basser, and D. Le Bihan. The B Matrix in Diffusion Tensor Echo-Planar Imaging. Magnetic Resonance Magazine, vol. 37, 1997, pp. 292–300.CrossRefGoogle Scholar
  8. 8.
    C. Pierpaoli and P.J. Basser. Toward a Quantitative Assessment of Diffusion Anisotropy. Magnetic Resonance Magazine, vol. 36, 1996, pp. 893–906.CrossRefGoogle Scholar
  9. 9.
    S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE PAMI, vol. 6, no. 6, 1984, pp. 721–741.CrossRefGoogle Scholar
  10. 10.
    J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B (Methodological), vol. 48, no. 3, 1986, pp. 259–302.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • C. Poupon
    • 1
    • 2
  • J. -F. Mangin
    • 1
  • V. Frouin
    • 1
  • J. Régis
    • 3
  • F. Poupon
    • 1
  • M. Pachot-Clouard
    • 1
  • D. Le Bihan
    • 1
  • I. Bloch
    • 2
  1. 1.Service Hospitalier Frédéric JoliotCommissariat à l’Energie AtomiqueOrsay CedexFrance
  2. 2.Ecole Nationale Supérieure des TélécommunicationsParisFrance
  3. 3.Service de Neurochirurgie Fonctionnelle et StéréotaxiqueLa TimoneFrance

Personalised recommendations