Advertisement

Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT

  • Alex Zijdenbos
  • Reza Forghani
  • Alan Evans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

In recent years, the quantitative analysis of MRI data has become a standard surrogate marker in clinical trials in multiple sclerosis (MS). We have developed INSECT (Intensity Normalized Stereotaxic Environment for Classification of Tissues), a fully automatic system aimed at the quantitative morphometric analysis of 3D MRI brain data sets. This paper describes the design and validation of INSECT in the context of a multi-center clinical trial in MS. It is shown that no statistically significant differences exist between MS lesion load measurements obtained with INSECT and those obtained manually by trained human observers from seven different clinical centers.

Keywords

Multiple Sclerosis Magnetic Resonance Imaging Data Multiple Sclerosis Lesion Lesion Load Automatic Quantification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Baxkhof, M. Filippi, D. H. Miller, P. Tofts, L. Kappos, and A. J. Thompson. Strategies for optimizing MRI techniques aimed at monitoring disease activity in multiple sclerosis treatment trials. Journal of Neurology, 244(2):76–84, Feb 1997.CrossRefGoogle Scholar
  2. 2.
    D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2):192–205, Mar./Apr. 1994.CrossRefPubMedGoogle Scholar
  3. 3.
    B. M. Dawant, A. P. Zijdenbos, and R. A. Margolin. Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Transactions on Medical Imaging, 12(4):770–781, Dec. 1993.CrossRefPubMedGoogle Scholar
  4. 4.
    A. Evans, M. Kamber, D. Collins, and D. MacDonald. An MRI-based probabilistic atlas of neuroanatomy. In S. D. Shorvon et al., editors, Magnetic Resonance Scanning and Epilepsy, chapter 48, pages 263–274. Plenum Press, 1994.Google Scholar
  5. 5.
    A. C. Evans, J. A. Frank, J. Antel, and D. H. Miller. The role of MRI in clinical trials of multiple sclerosis: Comparison of image processing techniques. Annals of Neurology, 41(1):125–132, Jan. 1997.CrossRefPubMedGoogle Scholar
  6. 6.
    A. C. Evans, S. Marrett, P. Neelin, et al. Anatomical mapping of functional activation in stereotactic coordinate space. NeuroImage, 1:43–53, 1992.CrossRefPubMedGoogle Scholar
  7. 7.
    G. Gerig, O. Kübler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11(2):221–232, June 1992.CrossRefPubMedGoogle Scholar
  8. 8.
    R. M. Henkelman and M. J. Bronskill. Artifacts in magnetic resonance imaging. Reviews of Magnetic Resonance in Medicine, 2(1):1–126, 1987.Google Scholar
  9. 9.
    M. Kamber, R. Shinghal, D. L. Collins, G. S. Francis, and A. C. Evans. Modelbased 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Transactions in Medical Imaging, 14(3):442–453, Sept. 1995.CrossRefGoogle Scholar
  10. 10.
    C. R. Meyer, P. H. Bland, and J. Pipe. Retrospective correction of intensity inhomogeneities in MRI. IEEE Transactions on Medical Imaging, 14(1):36–41, Mar. 1995.CrossRefPubMedGoogle Scholar
  11. 11.
    D. H. Miller, P. S. Albert, F. Barkhof, G. Francis, J. A. Frank, S. Hodgkinson, F. D. Lublin, D. W. Paty, S. C. Reingold, and J. Simon. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. Annals of Neurology, 39:6–16, 1996.CrossRefPubMedGoogle Scholar
  12. 12.
    J. R. Mitchell, S. J. Karlik, D. H. Lee, M. Eliasziw, G. P. Rice, and A. Fenster. Quantification of multiple sclerosis lesion volumes in 1.5 and 0.5T anisotropically filtered and unfiltered MR exams. Medical Physics, 23(1):115–126, Jan. 1996.CrossRefPubMedGoogle Scholar
  13. 13.
    J. R. Mitchell, S. J. Karlik, D. H. Lee, and A. Fenster. Computer-assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain. Journal of Magnetic Resonance Imaging, pages 197–208, Mar./Apr. 1994.Google Scholar
  14. 14.
    I. E. C. Ormerod, D. H. Miller, W. I. McDonald, et al. The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. Brain, 110:1579–1616, 1987.CrossRefPubMedGoogle Scholar
  15. 15.
    D. W. Paty, D. K. B. Li, UBC MS/MRI Study Group, and IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. Neurology, 43:662–667, 1993.CrossRefPubMedGoogle Scholar
  16. 16.
    P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629–639, July 1990.CrossRefGoogle Scholar
  17. 17.
    A. Simmons, P. S. Tofts, G. J. Barker, and S. R. Arridge. Sources of intensity nonuniformity in spin echo images. Magnetic Resonance in Medicine, 32:121–128, 1994.CrossRefPubMedGoogle Scholar
  18. 18.
    J. G. Sled and G. B. Pike. Standing-wave and RF penetration artifacts caused by elliptic geometry: an electrodynamic analysis of MRI. IEEE Transactions on Medical Imaging, 1997. (submitted).Google Scholar
  19. 19.
    J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A comparison of retrospective intensity non-uniformity correction methods for MRI. In Proceedings of the 15th International Conference on Information Processing in Medical Imaging (IPMI), pages 459–464, Poultney, VT, USA, June 1997.Google Scholar
  20. 20.
    J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), Feb. 1998.Google Scholar
  21. 21.
    J. Talairach and P. Tournoux. Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System — an Approach to Cerebral Imaging. Thieme Medical Publishers, New York, NY, 1988.Google Scholar
  22. 22.
    H. L. Weiner. Oral tolerance for the treatment of autoimmune diseases. Annual Review of Medicine, 48(48):341–51, 1997. 75 refs, Review.CrossRefPubMedGoogle Scholar
  23. 23.
    W. M. Wells III, W. E. L. Grimson, R. Kikinis, and F. A. Jolesz. Actaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15(4):429–442, Aug. 1996.CrossRefPubMedGoogle Scholar
  24. 24.
    D. A. G. Wicks, G. J. Barker, and P. S. Tofts. Correction of intensity nonuniformity in MR images of any orientation. Magnetic Resonance Imaging, 11(2):183–196, 1993.CrossRefPubMedGoogle Scholar
  25. 25.
    A. P. Zijdenbos, B. M. Dawant, and R. A. Margolin. Intensity correction and its effect on measurement variability in the computer-aided analysis of MRI. In Proceedings of the 9th International Symposium and Exhibition on Computer Assisted Radiology (CAR), pages 216–221, Berlin, Germany, June 1995.Google Scholar
  26. 26.
    A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer. Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13(4):716–724, Dec. 1994.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alex Zijdenbos
    • 1
  • Reza Forghani
    • 1
    • 2
  • Alan Evans
    • 1
  1. 1.Montreal Neurological InstituteMcConnell Brain Imaging CentreMontréalCanada
  2. 2.Department of Neurology and NeurosurgeryMontreal Neurological InstituteMontréalCanada

Personalised recommendations