Advertisement

An image processing environment for guiding vascular MR interventions

  • R. van der Weide
  • K. J. Zuiderveld
  • C. J. G. Bakker
  • C. Bos
  • H. F. M. Smits
  • T. Hoogenboom
  • J. J. van Vaals
  • M. A. Viergever
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

MRI offers potential advantages over conventional X-ray techniques for guiding and evaluating vascular interventions. Image guidance of such interventions via passive catheter tracking requires real-time processing of the dynamically acquired MR slices and advanced display facilities inside the MR examination room. Commercially available clinical MR-scanners currently do not provide this functionality.

This paper describes a processing environment that allows near-realtime MR-guided interventions. Two stand-alone workstations connected to our MR-scanner offer a flexible and fast tool for guiding the interventionist without affecting the stability of the MR-scanner. The paper describes and discusses our approach, including image processing techniques. Results of a phantom balloon angioplasty experiment are presented.

Keywords

Graphic Hardware Modulus Image Connected Client Intravascular Intervention Optic Fiber Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. A. Jolesz and S. M. Blumenfeld. Interventional use of magnetic resonance imaging. Magn. Reson. Q., 10:85–96, 1994.PubMedGoogle Scholar
  2. 2.
    C. L. Dumoulin, S. P. Souza, and R. D. Darrow. Real-time position monitoring of invasive devices using magnetic resonance. Magn. Reson. Med., 29:411–5, 1993.CrossRefPubMedGoogle Scholar
  3. 3.
    C. J. G. Bakker, R. M. Hoogeveen, W. F. Hurtak, J. J. van Vaals, M. A. Viergever, and W. P. T. M. Mali. MR-guided endovascular interventions: susceptibility-based catheter and near-real-time imaging technique. Radiology, 202:273–6, 1997.CrossRefPubMedGoogle Scholar
  4. 4.
    R. C. Wright, S. J. Riederer, F. Farzaneh, P. J. Rossman, and Y. Liu. Real-time MR fluoroscopic data acquisition and image reconstruction. Magn. Reson. Med., 12:407–15, 1989.CrossRefPubMedGoogle Scholar
  5. 5.
    R. W. Cox, A. Jesmanowicz, and J. S. Hyde. Real-time functional magnetic resonance imaging. Magn. Reson. Med., 33:230–6, 1995.CrossRefPubMedGoogle Scholar
  6. 6.
    A. B. Kerr, J. M. Pauly, B. S. Hu, K. C. Li, C. J. Hardy, C. H. Meyer, A. Macovski, and D. G. Nishimura. Real-time interactive MRI on a conventional scanner. Magn. Reson. Med., 38:355–67, 1997.CrossRefPubMedGoogle Scholar
  7. 7.
    K. Kose, T. Haishi, A. Caprihan, and E. Fukushima. Real-time NMR imaging systems using personal computers. J. Magn. Res., 124:35–41, 1997.CrossRefGoogle Scholar
  8. 8.
    A. F. Gmitro, A. R. Ehsani, T. A. Berchem, and R. J. Snell. A real-time reconstruction system for magnetic resonance imaging. Magn. Reson. Med., 35:734–40, 1996.CrossRefPubMedGoogle Scholar
  9. 9.
    J. K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley Publishing Company, Reading, Massachusetts, 2nd edition, 1994.Google Scholar
  10. 10.
    Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide. Addison-Wesley Publishing Company, April 1995.Google Scholar
  11. 11.
    T. Porter and T. Duff. Compositing digital images. In H. Christiansen, editor, SIGGRAPH ’84 Conference Proceedings (Minneapolis, MN, July 23–27, 1984), pages 253–259, July 1984. In Computer Graphics, Volume 18, Number 3.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. van der Weide
    • 1
  • K. J. Zuiderveld
    • 1
  • C. J. G. Bakker
    • 1
  • C. Bos
    • 1
  • H. F. M. Smits
    • 1
  • T. Hoogenboom
    • 2
  • J. J. van Vaals
    • 2
  • M. A. Viergever
    • 1
  1. 1.Image Sciences Institute, room E 01.334University Hospital UtrechtCX Utrechtthe Netherlands
  2. 2.Philips Medical SystemsBest

Personalised recommendations