Motion analysis of the right ventricle from MRI Images

  • Edith Haber
  • Dimitris N. Metaxas
  • Leon Axel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)


Both normal and abnormal right ventricular (RV) wall motion is not well understood. In this paper, we use data from tagged MRI images to perform the first 3D motion study of the entire right ventricle to date. Our technique is an adaptation of a physics-based deformable modeling methodology that was successfully used on the left ventricle(LV). As opposed to the previous approach, currently we use segmented contours to generate the geometry, 1D tags for our input data (due to the thinner RV), and localized degrees of freedom (DOFs) with finite elements. Although we build a biventricular model, our results focus on method validation and visualizing clinically useful parameters that describe RV wall motion.


Right Ventricular Right Ventricular Free Wall Right Ventricular Apex Left Ventricle Free Wall Right Ventricular Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Axel, D. Bloomgarden, C.N. Chang, D. Kraitchman, and A.A. Young. SPAM-MVU: a program for the analysis of dynamic tagged MRI. In Proceedings of the Soc. of Magnetic Resonance in Medicine 12th Annual Meeting, page 724, 1993.Google Scholar
  2. 2.
    L. Axel and L. Dougherty. Heart wall motion: Improved method of spatial modulation of magnetization for MR imaging. Radiology, 272:349–50, 1989.CrossRefGoogle Scholar
  3. 3.
    D. Barnard and J.S. Alpert. Right ventricular function in health and disease. Curr Probl Cardiol, 12:422–29, 1987.CrossRefGoogle Scholar
  4. 4.
    C.J. Chuong, M.S. Sacks, G. Templeton, F. Schwiep, and Jr. R.L. Johnson. Regional deformation and contractile function in canine right ventricular free wall. Am J Physiol, 260:H1224–1235, 1991.PubMedGoogle Scholar
  5. 5.
    E. Haber, D.N. Metaxas, and L. Axel. Three-dimensional geometric modeling of cardiac right and left ventricles. In Biomedical Engineering Soc Annual Meeting, San Diego, California, 1997.Google Scholar
  6. 6.
    J.W. Hurst. Atlas of the Heart. Gower Medical, New York, 1988.Google Scholar
  7. 7.
    A.D. McCulloch and J.H. Omens. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J Biomechanics, 24:539–48, 1991.CrossRefGoogle Scholar
  8. 8.
    D.N. Metaxas. Physics-based deformable models: applications to computer vision, graphics, and medical imaging. Kluwer Academic Publishers, Cambridge, 1996.Google Scholar
  9. 9.
    C.C. Moore, W.G. O’Dell, E.R. McVeigh, and E. A. Zerhouni. Calculation of three dimensional left ventricular strains from biplanar tagged MR images. Journal of Magnetic Resonance Imaging, 2:165–75, 1992.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    P.M.F. Nielsen, I.J. Le Grice, and B.H. Smaill P.J. Hunter. Mathematical model of geometry and fibrous structure of the heart. J Appl Physiol, 260:H1365–H1378, 1991.Google Scholar
  11. 11.
    W.G. O’Dell, C.C. Moore, W.C. Hunter, E.A. Zerhouni, and E.R. McVeigh. 3-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology, 195:829–35, 1996.CrossRefGoogle Scholar
  12. 12.
    J. Park, D. Metaxas, and L. Axel. Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM. Med Image Analysis J, 1(1):53–71, 1996.CrossRefGoogle Scholar
  13. 13.
    J.S. Pirolo, S.J. Bresina, L.L. Creswell, K.W. Myers, B.A. Szabo, M.W. Vannier, and M.K. Pasque. Mathematical three-dimensional solid modeling of biventricular geometry. Annals of Biomed Eng, 21:199–219, 1993.CrossRefGoogle Scholar
  14. 14.
    R.A. Raines, M.M. LeWinter, and J.W. Covell. Regional shortening patterns in canine right ventricle. Am J Physiol, 231:H1395–1400, 1976.Google Scholar
  15. 15.
    M.S. Sacks, C.J. Chuong, G.H. Templeton, and R. Peshock. In vivo 3-d reconstruction and geometric characterization of the right ventricular free wall. Annals of Biomed Eng, 21:263–275, 1993.CrossRefGoogle Scholar
  16. 16.
    W.P. Santamore, G.D. Meier, and A.A. Bove. Contractile function in canine right ventricle. Am J Physiol, 239:H794–H804, 1980.PubMedGoogle Scholar
  17. 17.
    M. Stuber, E. Nagel, S.E. Fischer, M.B. Scheidegger, and P. Boesiger. Systolic long axis contraction of the human myocardium. In Proceedings of the SMR, 1995.Google Scholar
  18. 18.
    L.K. Waldman, J.J. Allen, R.S. Pavelec, and A.D. McCulloch. Distributed mechanics of the canine right ventricle: effects of varying preload. J Biomechanics, 29(3):373–81, 1996.CrossRefGoogle Scholar
  19. 19.
    A.A. Young and L. Axel. Non-rigid heart wall motion using MR tagging. In Proceedings of the IEEE Computer Society Conference on computer vision and pattern recognition, pages 399–404, Campaign, Illinois, 1992.Google Scholar
  20. 20.
    A.A. Young, Z.A. Fayad, and L. Axel. Right ventricular mid-wall surface motion and deformation using magnetic resonance tagging. J Appl Physiol, 271:2677–88, 1996.Google Scholar
  21. 21.
    A.A. Young, D. L. Kraitchman, L. Dougherty, and L. Axel. Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Trans on Med Imaging, 14(3):413–21, September 1995.CrossRefGoogle Scholar
  22. 22.
    O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. McGraw-Hill, New York, fourth edition, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Edith Haber
    • 1
  • Dimitris N. Metaxas
    • 2
  • Leon Axel
    • 3
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.VAST Lab, Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations