Advertisement

Patient-specific analysis of left ventricular blood flow

  • Timothy N. Jones
  • Dimitris N. Metaxas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

We use a computational fluid dynamics (CFD) solver to simulate the flow of blood through the left ventricle (LV). Boundary conditions for the solver are derived from actual heart wall motion as measured by MRI-SPAMM. This novel approach allows for the first time a patientspecific LV blood flow simulation using exact boundary conditions.

Keywords

Boundary Cell Pressure Correction Numerical Grid Left Ventricle Wall Heart Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.S. Caretto, A.D. Gosman, S.V. Patankar, and D.B. Spalding. Two calculation procedures for steady, three-dimensional flows with recirculation. In Proc. 3rd Int. Conf. Num. Methods Fluid Dyn., 1972.Google Scholar
  2. 2.
    G. Dubini, M.R. de Leval, R. Pietrabissa, F.M. Montevecchi, and R. Fumero. A numerical fluid mechanical study of repaired congenital heart defects, application to the total cavopulmonary connection. J. Biomechanics, 29(1):111–121, 1996.CrossRefGoogle Scholar
  3. 3.
    J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer-Verlag, 1996.Google Scholar
  4. 4.
    C.A. J. Fletcher. Computational Techniques for Fluid Dynamics. Springer-Verlag, 1991.Google Scholar
  5. 5.
    D.M. McQueen and C.S. Peskin. A three-dimensional computational method for blood flow in the heart: Ii. contractile fibers. J. Computational Physics, 82:289–297, 1989.CrossRefGoogle Scholar
  6. 6.
    J. Park, D. Metaxas, and L. Axel. Analysis of left ventricular wall motion based on volumetric deformable models and mri-spamm. Medical Image Analysis, 1(1):53–71, 1996.CrossRefPubMedGoogle Scholar
  7. 7.
    S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing, 1980.Google Scholar
  8. 8.
    G. Pelle, J. Ohayon, and C. Oddou. Trends in cardiac dynamics: Towards coupled models of intracavity fluid dynamics and deformable wall mechanics. J. de Physique III, 4(6):1121–1127, 1994.CrossRefGoogle Scholar
  9. 9.
    C.S. Peskin and D.M. McQueen. A three-dimensional computational method for blood flow in the heart: I. immersed elastic fibers in a viscous incompressible fluid. J. Computational Physics, 81:372–405, 1989.CrossRefGoogle Scholar
  10. 10.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C. Cambridge, 2nd ed. edition, 1992.Google Scholar
  11. 11.
    P.J. Roache. Computational Fluid Dynamics. Hermosa Publishers, 1972.Google Scholar
  12. 12.
    S.H. Stone. Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numerical Analysis, 5:530–558, 1968.CrossRefGoogle Scholar
  13. 13.
    T.W. Taylor, H. Suga, Y. Goto, H. Okino, and T. Yamaguchi. The effects of cardiac infarction on realistic three-dimensional left ventricular blood ejection. Trans. ASME, 118:106–110, 1996.CrossRefGoogle Scholar
  14. 14.
    J.D. Thomas and A.E. Weyman. Numerical modeling of ventricular filling. Annals Biomedical Engineering, 20(1):19–39, 1992.CrossRefGoogle Scholar
  15. 15.
    A.P. Yoganathan, Jr. J.D. Lemmon, Y.H. Kim, P.G. Walker, R.A. Levine, and C.C. Vesier. A computational study of a thin-walled three-dimensional left ventricle during early systole. J. Biomechanical Engineering, 116:307–314, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Timothy N. Jones
    • 1
  • Dimitris N. Metaxas
    • 1
  1. 1.VAST Lab, Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations