Advertisement

Three-dimensional reconstruction and surgical navigation in padiatric epilepsy surgery

  • Alexandra Chabrerie
  • Fatma Ozlen
  • Shin Nakajima
  • Michael Leventon
  • Hideki Atsumi
  • Eric Grimson
  • Erwin Keeve
  • Sandra Helmers
  • James RivielloJr.
  • Gregory Holmes
  • Frank Duffy
  • Ferenc Jolesz
  • Ron Kikinis
  • Peter Black
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1496)

Abstract

We have used MRI-based three-dimensional (3D) reconstruction and a real-time, frameless, stereotactic navigation device to facilitate the removal of seizure foci in children suffering from intractable epilepsy. Using this system, the location of subdural grid and strip electrodes is recorded on the 3D model to facilitate focus localization and resection. Ten operations were performed — two girls and eight boys ranging in age from 3–17 — during which 3D reconstruction and surgical instrument tracking navigation was used. In all cases, the patients tolerated the procedure well and showed no post-operative neurological deficits.

Keywords

Epilepsy Surgery Seizure Focus Strip Electrode Eloquent Cortex Subdural Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Holmes GL: Intractable epilepsy in children. Epilepsia 37:14–27, 1996CrossRefPubMedGoogle Scholar
  2. 2.
    Rosenbaum TJ, Laxer KD, Vessely M, Smith WD: Subdural electrodes for seizure focus localization. Neurosurgery 19:73–81, 1986CrossRefPubMedGoogle Scholar
  3. 3.
    Luders H, Lesser RP, Dinner DS, Morris HH, Hahn J, Freidman L, Skipper G, Wyllie G, Friedman D: Localization of Cortical Function: New information from extraoperative monitoring of patients with epilepsy. Epilepsia 28: S56–S65, 1988.CrossRefGoogle Scholar
  4. 4.
    Cascino GD. Structural neuroimaging in partial epilepsy. Neurosurg Clin North Am 6:455–464, 1995.Google Scholar
  5. 5.
    Kikinis R, Gleason PL, Moriarty TM, Moore MR, Alexander E III, Stieg PE, Matsumae M, Lorensen WE, Cline HE, Black PM, Jolesz FA. Computer-assisted interactive three-dimensional planning for neurosurgical procedures. Neurosurgery 38:640–651, 1996CrossRefPubMedGoogle Scholar
  6. 6.
    Leventon ME: A registration, tracking and visualization system for image-guided surgery. MIT Master’s Thesis, May 1997Google Scholar
  7. 7.
    Gerig G, Kubler O, Kikinis R, Jolesz FA: Nonlinear anisotropic filtering of MRI data. IEEE Trans Med Imaging 11/2: 221–232, 1992CrossRefGoogle Scholar
  8. 8.
    Cline HE, Dumoulin CL, Lorensen WE, Hart HR, Ludke S: 3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm. Magn Reson Imaging 5:345–352, 1989CrossRefGoogle Scholar
  9. 9.
    Cline HE, Lorensen WE, Kikinis R, Jolesz FA: Three-dimensional segmentation of MR images of the head using probability and connectivity. J Comput Assist Tomogr 14: 1037–1045, 1990CrossRefPubMedGoogle Scholar
  10. 10.
    Cline HE, Lorensen WE, Souza SP, Jolesz FA, Kikinis R, Gerig G, Kennedy TE: 3D surface rendered MR images of the brain and its vasculature. Technical note J Comput Assist Tomogr 14: 344–351, 1991CrossRefGoogle Scholar
  11. 11.
    Engel J Jr: A practical guide for routine EEG studies in epilepsy: J Clin Neurophysiol 1:109–42, 1984CrossRefPubMedGoogle Scholar
  12. 12.
    Adelson PD, Black PMcL, Madsen JR, Kramer, U, Rockoff, MA, Riviello, JJ, Helmer, SL, Mikati, M, Holmes, GL: Use of subdural grids and strip electrodes to identify a seizure focus in children. Pediatr Neurosurg 22:174–180, 1995CrossRefPubMedGoogle Scholar
  13. 13.
    Riviello JJ Jr, Kramer U, Holmes G,. Safety of invasive electroencephalic monitoring: a comparison of adults and children. Neurology 43(suppl):A288, 1993Google Scholar
  14. 14.
    Grimson WEL, Ettinger, GJ, White SJ, Lozano-Perez T, Wells WM, Kikinis R. A automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Trans Med Imaging 15:129–140, 1996CrossRefPubMedGoogle Scholar
  15. 15.
    Gleason PL, Kikinis R, Altobelli D, Wells WM, Alexander E III, Black PMcL, Jolesz FA: Video registration virtual reality for nonlikage stereotactic surgery. Stereotact Funct Neurosurg 63:139–43, 1994CrossRefPubMedGoogle Scholar
  16. 16.
    Nakajima S, Atsumi H, Kikinis R, Moriarty TM, Metcalf DC, Jolesz FA, Black PMcL: Use of cortical surface vessel registration for image-guided neurosurgery. Neurosurgery 41: 1209, 1997.CrossRefGoogle Scholar
  17. 17.
    Nakajima S, Atsumi H, Bhalerao AH, Computer assisted surgical planning for cerebrovascular neurosurgery. Neurosurgery 41:403–409, 1997CrossRefPubMedGoogle Scholar
  18. 18.
    Kettenbach J, Richolt JA, Hata N, et al (1997) Surgical planning Laboratory: a new challenge for radiology Computer Assisted Radiology, Elsevier, Amsterdam (in press)Google Scholar
  19. 19.
    Hu X, Tan KK, Levin DN, Galhatra S, Mullan JF, Hekmatpanah J, Spire JP: Three-dimensional magnetic resonance images of the brain: application to neurosurgical planning. J Neurosurg 72: 433–440, 1990CrossRefPubMedGoogle Scholar
  20. 20.
    Aoki S, Sasaki Y, Machida Y, Ohkubo T, Minami M, Sasaki Y: Cerebral aneurysms: detection and delineation suing 3D CT angiography. AJNR 13: 1115–1120, 1992PubMedGoogle Scholar
  21. 21.
    Schwartz RB, Jones KM, Chernoff DM, Mukheyi SK, Khorasani T, Tice HM, Kikinis R, Hooton SM, Stieg PE, Polak JF: Common carotid artery bifurcation: evaluation with spiral CT work in progress. Radiology 185: 513–519, 1992CrossRefPubMedGoogle Scholar
  22. 22.
    Castillo M, Wilson JD. CT angiography of the common carotid artery bifurcation: Comparison between two techniques and conventional angiography. Neuroradiology 36: 602–604, 1994CrossRefPubMedGoogle Scholar
  23. 23.
    Schwartz, RB. Neuroradiology applications of spinal CT. Semin Ultrasound, CT, MR 15: 139–147, 1994CrossRefGoogle Scholar
  24. 24.
    Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K. Three-dimensional digitizer (neuro-navigator): New equipment of CT-guided stereotaxic surgery. Surg Neurol 27: 543–547, 1987CrossRefPubMedGoogle Scholar
  25. 25.
    Watanabe E, Mayanagl Y, Kosugi Y, et al, Open surgery assisted by neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurg 28: 792–800, 1991CrossRefGoogle Scholar
  26. 26.
    Kato A, Yoshimine T, Hayakawa T, et al. A frameless, armless navigational system for computer assisted neurosurgery. Technical note. J Neurosurg 74: 845–849, 1991CrossRefPubMedGoogle Scholar
  27. 27.
    Barnett GH, Kormos DW, Steiner CP, et al. Intraoperative localization using an armless, frameless stereotatic wand. J Neurosurg 78:510–514, 1993CrossRefPubMedGoogle Scholar
  28. 28.
    Tan KK, Grzeszczuk R, Levin DN, et al. A frameless stereotactic approach to surgical planning based on retrospective patient-image registration. Technical note. J Neurosurg 79:296–303, 1993CrossRefPubMedGoogle Scholar
  29. 29.
    Reinhardt HF, Hortsmann GA, Gratzl O. Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular malformations. Neurosurg 32:51–57, 1993CrossRefGoogle Scholar
  30. 30.
    Barnett GH, Kormos DW, Steiner CP, et al Use of a frameless, armless, stereotactic wand for brain tumor localization and three-dimensional neuroimaging. Neurosurg 33:674–678, 1993CrossRefGoogle Scholar
  31. 31.
    Golfinos JG, Fitzpatrick BC, Smith LR, et al. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83:197–205, 1995CrossRefPubMedGoogle Scholar
  32. 32.
    Friets EM, Strohbehn JW, Hatch JF, et al. A frameless stereotaxic operating microscope for neurosurgery. IEEE Trans Biomed Eng 36:608–617, 1989CrossRefPubMedGoogle Scholar
  33. 33.
    Koivukangas J, Louhisalmi Y, Alakuijala J, et al. Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg 79:36–42, 1993CrossRefPubMedGoogle Scholar
  34. 34.
    Laborde G, Gilsbach J, Harders A, et al. Computer-assisted localizer for planning of surgery and intra-operative orientation. Acta Neurochi (Wien)119:166–170, 1992CrossRefGoogle Scholar
  35. 35.
    Robert DW, Strobehn JW, Hatch JF, et al. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65:545–549, 1986CrossRefGoogle Scholar
  36. 36.
    Wells WM III, Viola P, Atsumi H, Nakajima S, Kikinis R: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1:35–51, 1996.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Alexandra Chabrerie
    • 1
    • 3
  • Fatma Ozlen
    • 1
    • 3
  • Shin Nakajima
    • 1
    • 3
  • Michael Leventon
    • 2
  • Hideki Atsumi
    • 1
  • Eric Grimson
    • 2
  • Erwin Keeve
    • 1
  • Sandra Helmers
    • 4
  • James RivielloJr.
    • 4
  • Gregory Holmes
    • 4
  • Frank Duffy
    • 4
  • Ferenc Jolesz
    • 1
  • Ron Kikinis
    • 1
  • Peter Black
    • 3
  1. 1.Surgical Planning Laboratory, Brigham and Women’s HospitalHarvard Medical SchoolBoston
  2. 2.Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridge
  3. 3.Division of Neurosurgery, Brigham and Women’s Hospital, Children’s HospitalHarvard Medical SchoolBoston
  4. 4.Department of Neurology, Children’s HospitalHarvard Medical SchoolBoston

Personalised recommendations