Advertisement

Projective and illumination invariant representation of disjoint shapes

  • Sergei Startchik
  • Ruggero Milanese
  • Thierry Pun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1406)

Abstract

A projectively invariant representation for groups of planar disjoint contours is proposed as a simultaneous polar reparametrization of multiple curves. Its origin is an invariant point and for each ray orientation, the cross-ratio of the intersections with its closest curves is taken as a value associated to the radius. The sequence of cross-ratio values for all orientations represents a signature. With respect to other methods this representation is less reliant on single curve properties, both for the construction of the projective basis and for calculating the signature. The proposed representation has been originally developed for planar shapes, but an extension is proposed and validated for trihedral corners. Illumination invariant measures are introduced into the representation to increase it discrimination capability. The whole approach is applied to shape-based retrieval from image databases. Experiments are reported on a database of real trademarks.

Keywords

Reference Frame Image Database Invariant Representation Invariant Property Invariant Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu, An optimal algorithm for approximate nearest neighbour searching in fixed dimensions. Department of Computer Science, University of Maryland, College Park, Technical report CS-TR-3568, Dec. 1995.Google Scholar
  2. 2.
    S. Carlsson, R. Mohr, T. Moons, L. Morin, C. Rothwell, M. Van Diest, L. Van Gool, F. Veillon, A. Zissermann, “Semi-local projective invariants for the recognition of smooth plane curve”, Intern. J. Comput. Vis. 19(3), 1996, p. 211–236.CrossRefGoogle Scholar
  3. 3.
    C. Coelho, A. Heller, J.L. Mundy, D. A. Forsyth, A. Zisserman, “An Experimental Evaluation of Projective Invariants”, In [56], p. 87–104.Google Scholar
  4. 4.
    F. S. Cohen, J.-Y. Wang, “Part I: Modeling image curves using invariant 3-D object curve models — a path to 3-D recognition and shape estimation from image contours”, IEEE Trans. Patt. Anal. Mach. Intell., 1994, vol. 16, No. 1, p. 1–12.CrossRefGoogle Scholar
  5. 5.
    G. D. Finlayson, “Color constancy in diagonal chromaticity space”, Intern. Conf. Comp. Vis., MIT, 1995, p. 218–223.Google Scholar
  6. 6.
    M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker (1995). Query by image and video content: the QBIC system. IEEE Computer, September, 23–32.Google Scholar
  7. 7.
    T. Gevers, A. W. M. Smeulders, “A comparative study of several color models for color image invariant retreival”, Proc. 1st Int. Workshop on Image Databases & Multimedia Search, Amsterdam, Netherlands, 1996, p. 17.Google Scholar
  8. 8.
    A. Goshtasby, “Design and Recovery of 2-D and 3-D shapes using rational gaussian curves and surfaces”, Intern. J. Comput. Vis. 10:3, 1993, pp. 233–256.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Hartley, “Projective reconstruction and invariants from multiple images”, IEEE Trans. Patt. Anal. Mach. Intell., 1994, vol. 16, No. 10.Google Scholar
  10. 10.
    K. Hirata and T. Kato, Query by Visual Example: Content-Based Image Retrieval. A. Pirotte, C. Delobel and Gottlob (Eds.), Proc. E. D. B. T.'92 Conf. on Advances in Database Technology. Lecture Notes in Computer Science Vol. 580, Springer-Verlag, 1994, 56–71.Google Scholar
  11. 11.
    P.J. Huber, “Robust statistics”, Wiley, 1981Google Scholar
  12. 12.
    R. Jain, “Image databases and multimedia search”, Invited talk, Proc. 1st Int. Workshop on Image Databases & Multimedia Search, Amsterdam, Netherlands, 1996.Google Scholar
  13. 13.
    K. Kanatani, “Computational cross-ratio for computer vision”, CVGIP: Image Understanding, Vol. 60, No. 3, 1994, p. 371–381.CrossRefGoogle Scholar
  14. 14.
    D. G. Lowe, “Perceptual Organization and Visual Recognition”, Kluwer Academic, Norwell, Ma, 1985.Google Scholar
  15. 15.
    S. Maybank, “Probabilistic analysis of the application of the cross ratio to model based vision: misclassification”, Intern. J. Comput. Vis. 14, 1995, p. 199–210.CrossRefGoogle Scholar
  16. 16.
    R. Milanese, D. Squire and T. Pun, Correspondence analysis and hierarchical indexing for content-based image retrieval. IEEE Intl. Conference on Image Processing, Lausanne, Switzerland, Sept 16–19, 1996.Google Scholar
  17. 17.
    T. Moons, E.J. Pauwels, L.J. Van Gool, A. Oosterlinck, “Foundations of semi-differential invariants”, Intern. J. Comput. Vis. 14, 1993, p. 25–47.CrossRefGoogle Scholar
  18. 18.
    J.L. Mundy and A. Zisserman (editors), “Geometric Invariance in Computer Vision”, MIT Press, Cambridge Ma, 1992.Google Scholar
  19. 19.
    J.L. Mundy, D. Kapur, S. J. Maybank, P. Gros and L. Quan, “Geometric Interpretation of Joint Conic Invariants”, In [56], p. 77–86.Google Scholar
  20. 20.
    E.J. Pauwels, T. Moons, L.J. Van Gool, P. Kempenaers, A. Oosterlinck, “Recognition of planar shapes under affine distortion”, Intern. J. Comput. Vis. 14, 1993, p. 49–65.CrossRefGoogle Scholar
  21. 21.
    A. Pentland, R.W. Picard, and S. Sclaroff (1994). Photobook: tools for content-based manipulation of image databases. (Storage and Retrieval for Image and Video Databases II, San Jose, CA, USA, 7–8 Feb. 1994). Proc. of the SPIE-The Int. Soc. for Optical Eng., 2185,34–47.Google Scholar
  22. 22.
    T. Pun, D. Squire, Statistical structuring of pictorial databases for content-based image retrieval systems. Pattern Recognition Letters, 17, 12, October 1996, 1299–1310.CrossRefGoogle Scholar
  23. 23.
    T. H. Reiss, “Recognizing planar objects using invariant image features”, Lecture Notes in Computer Science, Springer-Verlag, 676, 1993.Google Scholar
  24. 24.
    E. Rivlin, I. Weiss, “Local invariants for recognition”, IEEE Trans. Patt. Anal. Mach. Intell., 1995, vol. 17, No. 3.Google Scholar
  25. 25.
    S. Startchik, R. Milanese, C. Rauber, T. Pun, “Planar shape databases with affine invariant search”, Workshop on Image Databases & Multimedia Search, Amsterdam, 1996, p.202.Google Scholar
  26. 26.
    S. Startchik, C. Rauber, T. Pun, “Recognition of planar objects over complex backgrounds using line invariants and relevance measures”, Workshop on Geometric Modeling & Invariants for Computer Vision, Xian, China, 1995, p. 301–307.Google Scholar
  27. 27.
    VIRAGE web site, http://www.virage.com.Google Scholar
  28. 28.
    I. Weiss, “Geometric Invariants and Object Recognition”, Intern. J. Comput. Vis. 10:3, 1993, pp. 209.Google Scholar
  29. 29.
    A. Zissermann, D.A. Forsyth, J.L. Mundy, C.A. Rothwell, “Recognizing general curved objects efficiently”, In 18., p. 228–251Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sergei Startchik
    • 1
  • Ruggero Milanese
    • 1
  • Thierry Pun
    • 1
  1. 1.Dept. of Computer Science (CUI)University of GenevaGeneva 4Switzerland

Personalised recommendations