Analysing rational properties of change operators based on forward chaining

  • Hassan Bezzazi
  • Stéphane Janot
  • Sébastien Konieczny
  • Ramón Pino Pérez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1472)


We propose an abstract framework to analyse the rationality of change operators defined in a syntactical way. More precisely we propose “syntactical” postulates of rationality stemming from AGM ones. Then we introduce five change operators based on forward chaining. Finally we apply our abstract framework to analyse the rationality of our operators.


Knowledge Base Selection Function Rank Function Belief Revision Integrity Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50:510–530, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Baral, S. Kraus, J. Minker and V.S. Subrahmanian. Combining knowledge bases consisting of first order theories. Computational Intelligence, 80:45–71, 1992.Google Scholar
  3. 3.
    H. Bezzazi and R. Pino Pérez. Rational transitivity and its models. In Proc. of the Twenty-Sixth International Symposium on Multiple-Valued Logic, Santiago de Compostela, Spain, May, 1996, pp. 160–165, IEEE Computer Society Press.Google Scholar
  4. 4.
    H. Bezzazi, D. Makinson, and R. Pino Pérez. Beyond rational monotony: some strong non-horn rules for nonmonotonic inference relations. Journal of Logic and Computation, 7:605–631, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Dalal. Investigations into a theory of knowledge base revision: Preliminary report. In Proc. of the Seventh National Conference on Artificial Intelligence (AAAI'88), pp. 475–479, 1988.Google Scholar
  6. 6.
    C. Damasio, W. Nedjdl, and L. M. Pereira. Revise: An extended logic programming system for revising knowledge bases. In Proc. of the 4th International Conference on Principles of Knowledge Representation and Reasoning, pp. 607–618, Morgan Kaufmann, 1994.Google Scholar
  7. 7.
    A. Darwiche, and J. Pearl. On the logic of iterated belief revision. Artificial Intelligence, 89:1–29, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates and counterfactuals. In Proc. of 11th Symposium on Principles of Database Systems, pp. 261–273, ACM Press, 1992.Google Scholar
  9. 9.
    R. Fagin, G. Kuper, J.D. Ullman, and M.Y. Vardi. Updating logical databases. Advances in Computing Research, 3:1–18, 1986.Google Scholar
  10. 10.
    M. Freund and D. Lehmann. Belief revision and rational inference. Technical Report 94-16, Institute of Computer Science, The Hebrew University of Jerusalem. 1994.Google Scholar
  11. 11.
    A. Fuhrmann. Theory contraction through base contraction. Journal of Philosophical Logic, 20:175–203, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    P. Gärdenfors. Knowledge in Flux: modeling the dynamics of epistemic states. MIT press, Cambridge, MA, 1988.Google Scholar
  13. 13.
    P. Gärdenfors and D. Makinson. Relations between the logic of theory change and nonmonotonic logic. In The Logic of Theory Change, Workshop, Konstanz, FRG, Octuber 1989, pages 185–205. Springer-Verlag, 1989. Lecture Notes in Artificial Intelligence 465.Google Scholar
  14. 14.
    S.O. Hansson. Theory contraction and base contraction unified. Journal of Symbolic Logic, 58:602–625, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    S.O. Hansson. Reversing the Levi identity. Journal of Philosophical Logic, 22:637–669, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Katsuno and A.O. Mendelzon. Propositional knowledge base revision and minimal change. Artificial Intelligence, 52:263–294, 1991.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Katsuno and A.O. Mendelzon. On the difference between updating a knowledge database and revising it. In Belief Revision, P. Gärdenfors Ed. Cambrigde tracts in theoretical computer science 29. Cambridge University Press, 1992.Google Scholar
  18. 18.
    D. Lehmann. Belief revision, revised. In Proceedings IJCAI'95, 1995, pages 1534–1540.Google Scholar
  19. 19.
    D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial Intelligence, 55:1–60, 1992.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Paolo Liberatore. The complexity of iterated belief revision. In Proceedings of the Sixth International Conference on Database Theory-ICDT'97, Delphi, Greece, January 8–10, 1997. Lecture Notes in Computer Science, Vol. 1186, Springer, 1997, pages 276–290.Google Scholar
  21. 21.
    V. Marek and M. Truszczynski. Revision programming, Database Updates and Integrity Constraints. In Proc. of 5th International Conference of Database Theory, Prague, Czech Republic, January 11–13, 1995. Lecture Notes in Computer Science, Vol. 893, Springer, 1995, pages 368–382.Google Scholar
  22. 22.
    A.C. Nayak. Foundational Belief Change. Journal of Philosophical Logic, 23:495–533, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    B. Nebel. Syntax-Based Approches to Belief Revision. In Belief Revision, P. Gärdenfors Ed. Cambrigde tracts in theoretical computer science 29. Cambridge University Press, 1992, pages 52–88Google Scholar
  24. 24.
    R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57–95, 1987.zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Satoh. Nonmonotonic reasoning by minimal belief revision. In Proceedings International Conference on Fifth Generation Computer Systems, Tokio, 1988, pages 455–462.Google Scholar
  26. 26.
    N. Tennant. Changing the Theory of Theory Change: Towards a Computational Approach. British Journal for Philosophy of Science, 45:865–897, 1994.zbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Weber. Updating propositional formulas. In Proceedings First Conference on Database Systems, 1986, pages 487–500.Google Scholar
  28. 28.
    M. Winslett. Reasoning about action using a possible models approach. In Proceedings AAAI'88, 1988, pages 89–93.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Hassan Bezzazi
    • 1
  • Stéphane Janot
    • 1
  • Sébastien Konieczny
    • 1
  • Ramón Pino Pérez
    • 1
  1. 1.LIFL U.A. 369 du CNRSUniversité de Lille IVilleneuve d'AscqFrance

Personalised recommendations