Advertisement

Logical transactions and serializability

  • Carl-Alexander Wichert
  • Burkhard Freitag
  • Alfred Fent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1472)

Abstract

The concept of logic databases can serve as a clear and expressive foundation of various kinds of information systems. However, classical logic languages refer to a single database state, whereas in modern information systems it is necessary to take dynamic behaviour into account. For this purpose, several update languages have been proposed, among them [1,5,6,9,16,17,18,23], which allow to specify complex transitions from one database state to another. From the evaluation point of view, a complex state transition can and should be considered as a transaction. Up to now, the isolation property of transactions has been poorly addressed in the context of logic update languages, although it is an important problem even for classical, sequential transactions (see

Keywords

Time Slot Database State Deductive Database Logical Semantic Logical Transaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.Google Scholar
  2. 2.
    K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 89–148. Morgan Kaufmann Publishers, San Mateo, CA, 1988.Google Scholar
  3. 3.
    C. Beeri, P. A. Bernstein, and N. Goodman. A model for concurrency in nested transaction systems. Journal of the ACM, 36(2):230–269, 1989.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addison-Wesley Publishing Company, 1987.Google Scholar
  5. 5.
    A. J. Bonner and M. Kifer. An overview of Transaction Logic. Theoretical Computer Science, 133:205–265, 1994.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. J. Bonner and M. Kifer. Concurrency and communication in Transaction Logic. In Proc. Joint Int. Conf. and Symp. on Logic Programming (JICSLP '96), Bonn, Germany, pages 142–156, 1996.Google Scholar
  7. 7.
    A. J. Bonner and M. Kifer. The state of change: A survey. In B. Freitag, H. Decker, M. Kifer, and A. Voronkov, editors, Transactions and Change in Logic Databases, volume 1472 of LNCS, pages 1–36. Springer-Verlag, Berlin, Germany, 1998.Google Scholar
  8. 8.
    W. Chen. Declarative updates of relational databases. ACM Transactions on Database Systems, 20(1):42–70, 1995.CrossRefGoogle Scholar
  9. 9.
    W. Chen. Programming with logical queries, bulk updates, and hypothetical reasoning. IEEE Transactions on Knowledge and Data Engineering, 9(4):587–599, 1997.CrossRefGoogle Scholar
  10. 10.
    C. Elkan. Independence of logic database queries and updates. In Proc. 9th ACM Symp. on Principles of Database Systems, pages 154–160, 1990.Google Scholar
  11. 11.
    S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating deltas to be first-class citizens in a database programming language. ACM Transactions on Database Systems, 21(3):370–426, 1996.CrossRefGoogle Scholar
  12. 12.
    J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers, San Mateo, CA, 1993.zbMATHGoogle Scholar
  13. 13.
    U. Halici and A. Dogac. An optimistic locking technique for concurrency control in distributed databases. IEEE Transactions on Software Engineering, 17(7):712–724, 1991.CrossRefGoogle Scholar
  14. 14.
    A. Lefebvre. Towards an efficient evaluation of recursive aggregates in deductive databases. New Generation Computing, 12(2):131–160, 1994.zbMATHCrossRefGoogle Scholar
  15. 15.
    J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, Germany, 2nd edition, 1987.zbMATHGoogle Scholar
  16. 16.
    B. Ludäscher, U. Hamann, and G. Lausen. A logical framework for active rules. In Proc. 7th Int. Conf. on Management of Data (COMAD '95), Pune, India, 1995.Google Scholar
  17. 17.
    S. Manchanda and D. S. Warren. A logic-based language for database updates. In J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages 363–394. Morgan Kaufmann Publishers, San Mateo, CA, 1988.Google Scholar
  18. 18.
    D. Montesi, E. Bertino, and M. Martelli. Transactions and updates in deductive databases. IEEE Transactions on Knowledge and Data Engineering, 9(5):784–797, 1997.CrossRefGoogle Scholar
  19. 19.
    J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing. MIT Press, 1985.Google Scholar
  20. 20.
    K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database engine. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 442–453, 1994.Google Scholar
  21. 21.
    A. van Gelder. The well-founded semantics of aggregation. In Proc. 11th ACM Symp. on Principles of Database Systems, pages 127–138, 1992.Google Scholar
  22. 22.
    A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs. Journal of the ACM, 38(2):620–650, 1991.zbMATHGoogle Scholar
  23. 23.
    C. A. Wichert and B. Freitag. Capturing database dynamics by deferred updates. In Proc. Int. Conf. on Logic Programming (ICLP '97), Leuven, Belgium, pages 226–240, 1997.Google Scholar
  24. 24.
    C. A. Wichert and B. Freitag. Capturing database dynamics by deferred updates. Technical Report MIP-9704, Universität Passau (FMI), 1997. Available in the WWW:http://www.fmi.uni-passau.de/~freitag/papers/.Google Scholar
  25. 25.
    C. A. Wichert, B. Freitag, and A. Fent. Logical transactions and serializability. Technical Report MIP-9807, Universität Passau (FMI), 1998. Available in the WWW:http://www.fmi.uni-passau.de/~freitag/papers/.Google Scholar
  26. 26.
    U. Zukowski and B. Freitag. The deductive database system LOLA. In Proc. 4th Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR '97), Dagstuhl, Germany, pages 375–386, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Carl-Alexander Wichert
    • 1
  • Burkhard Freitag
    • 1
  • Alfred Fent
    • 1
  1. 1.Fakultät für Mathematik und InformatikUniversität PassauPassauGermany

Personalised recommendations