Skip to main content

A degree-decreasing Lemma for (MOD q, MOD p) circuits

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

Consider a (MODq,MODp) circuit, where the inputs of the bottom MODp gates are degree-d polynomials of the input variables (p, q are different primes). Using our main tool — the Degree Decreasing Lemma — we show that this circuit can be converted to a (MODq, MODp) circuit with linear polynomials on the input-level with the price of increasing the size of the circuit. This result has numerous consequences: for the Constant Degree Hypothesis of Barrington, Straubing and Thérien [3], and generalizing the lower bound results of Yan and Parberry [21], Krause and Waack [13] and Krause and Pudlák [12]. Perhaps the most important application is an exponential lower bound for the size of (MODq, MODp) circuits computing the n fan-in AND, where the input of each MODp gate at the bottom is an arbitrary integer valued function of cn variables (c < 1) plus an arbitrary linear function of n input variables.

We believe that the Degree Decreasing Lemma becomes a standard tool in modular circuit theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. gS 11 formulae on finite structures. Annals of Pure and Applied Logic, 24:1–48, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. A. M. Barrington, R. Beigel, and S. Rudich. Representing Boolean functions as polynomials modulo composite numbers. Comput. Complexity, 4:367–382, 1994. Appeared also in Proc. 24th Ann. ACM Symp. Theor. Comput., 1992.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over groups. Information and Computation, 89:109–132, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Beigel and J. Tarui. On ACC. In Proc. 32nd Ann. IEEE Symp. Found. Comput. Sci., pages 783–792, 1991.

    Google Scholar 

  5. B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. In Proc. 26th Ann. IEEE Symp. Found. Comput. Sci., pages 429–442, 1985. Appeared also in SIAM J. Comput. Vol. 17, (1988).

    Google Scholar 

  6. M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy. Math. Systems Theory, 17:13–27, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Grolmusz. A weight-size trade-off for circuits with mod m gates. In Proc. 26th Ann. ACM Symp. Theor. Comput., pages 68–74, 1994.

    Google Scholar 

  8. V. Grolmusz. On the weak mod m representation of Boolean functions. Chicago Journal of Theoretical Computer Science, 1995(2), July 1995.

    Google Scholar 

  9. V. Grolmusz. Separating the communication complexities of MOD m and MOD p circuits. J. Comput. System Sci., 51(2):307–313, 1995. also in Proc. 33rd Ann. IEEE Symp. Found. Comput. Sci., 1992, pp. 278–287.

    Article  MathSciNet  Google Scholar 

  10. J. Håstad. Almost optimal lower bounds for small depth circuits. In Proc. 18th Ann. ACM Symp. Theor. Comput., pages 6–20, 1986.

    Google Scholar 

  11. J. Kahn and R. Meshulam. On mod p-transversals. Combinatorica,10(1):17–22, 1991.

    Article  MathSciNet  Google Scholar 

  12. M. Krause and P. Pudlák. On the computational power of depth 2 circuits with threshold and modulo gates. In Proc. 26th Ann. ACM Symp. Theor. Comput., 1994.

    Google Scholar 

  13. M. Krause and S. Waack. Variation ranks of communication matrices and lower bounds for depth-two circuits having nearly symmetric gates with unbounded fan-in. Mathematical Systems Theory, 28(6):553–564,Nov./Dec. 1995.

    Article  MathSciNet  Google Scholar 

  14. A. Razborov. Lower bounds for the monotone complexity of some Boolean functions. Sov. Math. Dokl., 31:354–357, 1985.

    MATH  Google Scholar 

  15. A. Razborov. Lower bounds on the size of bounded depth networks over a complete basis with logical addition, (in Russian). Mat. Zametki, 41:598–607, 1987.

    MATH  MathSciNet  Google Scholar 

  16. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proc. 19th Ann. ACM Symp. Theor. Comput., pages 77–82, 1987.

    Google Scholar 

  17. R. Smolensky. On interpolation by analytic functions with special properties and some weak lower bounds on the size of circuits with symmetric gates. In Proc. 31st Ann. IEEE Symp. Found. Comput. Sci., pages 628–631, 1990.

    Google Scholar 

  18. M. Szegedy. Functions with bounded symmetric communication complexity and circuits with MOD m gates. In Proc. 22nd ANN. ACM SYMP.THEOR. COMPUT., pages 278–286, 1990.

    Google Scholar 

  19. G. Tardos and D. A. M. Barrington. A lower bound on the MOD 6 degree of the OR function. In Proceedings of the Third Israel Symosium on the Theory of Computing and Systems ISTCS'95, pages 52–56, 1995.

    Google Scholar 

  20. J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume A, chapter 14. The complexity of finite functions, by R.B. Boppana and M. Sipser. Elsevier-MIT Press, 1990.

    Google Scholar 

  21. P. Yan and I. Parberry. Exponential size lower bounds for some depth three circuits. Information and Computation, 112:117–130, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. C. Yao. Separating the polynomial-time hierarchy by oracles. In Proc.26th Ann. IEEE Symp. Found. Comput Sci., pages 1–10, 1985.

    Google Scholar 

  23. A. C. Yao. On ACC and threshold circuits. In Proc. 31st Ann. IEEE Symp. Found. Comput. Sci., pages 619–627, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grolmusz, V. (1998). A degree-decreasing Lemma for (MOD q, MOD p) circuits. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055055

Download citation

  • DOI: https://doi.org/10.1007/BFb0055055

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics