Symbolic reaching definitions analysis of Ada programs

  • Johann Blieberger
  • Bernd Burgstaller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1411)


A data-flow framework for symbolic symbolic reaching definitions analysis is presented.

It produces a more accurate solution of the reaching definitions problem than can be achieved with “classic” data-flow analysis, which is very important for safety-related applications.


Recurrence Relation Basic Block Path Condition Symbolic Evaluation Program Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Aho, R. Seti, and J. D. Ullman. Compilers: principles, techniques, and tools. Addison-Wesley, Reading, MA, 1986.Google Scholar
  2. 2.
    J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow analysis of while-programs. ACM Trans. Prog. Lang. Sys., 7(1):37–61, 1985.zbMATHCrossRefGoogle Scholar
  3. 3.
    J. Blieberger. Data-flow frameworks for worst-case execution time analysis. (submitted), 1997.Google Scholar
  4. 4.
    R. Chapman, A. Burns, and A. Wellings. Combining static worst-case timing analysis and program proof. Real-Time Systems, 11(2):145–171, 1996.CrossRefGoogle Scholar
  5. 5.
    T. E. Cheatham, G. H. Hollowy, and J. A. Townley. Symbolic evaluation and the analysis of programs. IEEE Trans. on Software Engineering, 5(4):403–417, July 1979.Google Scholar
  6. 6.
    ISO/IEC 8652. Ada Reference manual, 1995.Google Scholar
  7. 7.
    J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms. J. ACM, 23(1):158–171, 1976.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Informatica, 7:305–317, 1977.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks — a unified model. Acta Informatica, 28:121–163, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    M. C. Pauli. Algorithm Design — A Recursion Transformation Framework. Wiley Interscience, New York, NY, 1988.Google Scholar
  11. 11.
    B. G. Ryder and M. C. Pauli. Elimination algorithms for data flow analysis. ACM Computing Surveys, 18(3):277–316, 1986.CrossRefGoogle Scholar
  12. 12.
    V. C. Sreedhar. Efficient Program Analysis Using DJ Graphs. PhD thesis, School of Computer Science, McGill University, Montréal, Québec, Canada, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Johann Blieberger
    • 1
  • Bernd Burgstaller
    • 1
  1. 1.Department of Automation (183/1)Technical University of ViennaVienna

Personalised recommendations