Skip to main content

Determinant: Old algorithms, new insights

Extended abstract

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Abstract

In this paper we approach the problem of computing the characteristic polynomial of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of the coefficients of the characteristic polynomial, in terms of walks and closed walks of different kinds in the underlying graph. We develop algorithms based on these characterizations, and show that they tally with well-known algorithms arrived at independently from considerations in linear algebra.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Berkowitz. On computing the determinant in small parallel time using a small number of processors. Information Processing Letters, 18:147–150, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Chaiken. A combinatorial proof of the all minors matrix theorem. SIAM J. Algebraic Discrete Methods, 3:319–329, 1982.

    MATH  MathSciNet  Google Scholar 

  3. A. L. Chistov. Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic. In Proc Int. Conf. Foundations of Computation Theory, LNCS 199, pages 63–69. Springer, 1985.

    Google Scholar 

  4. L. Csanky. Fast parallel inversion algorithm. SIAM J of Computing, 5:818–823, 1976.

    MathSciNet  Google Scholar 

  5. C. Damm. DET=L(#L). Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt-UniversitÄt zu Berlin, 1991.

    Google Scholar 

  6. D. Fadeev and V. Fadeeva. Computational Methods in Linear Algebra. Freeman, San Francisco, 1963.

    Google Scholar 

  7. D. Foata. Etude algébrique de certains problèmes d'analyse combinatoire et du calcul des probabilités. Publ. Inst. Statist. Univ. Paris, 14:81–241, 1965.

    MATH  MathSciNet  Google Scholar 

  8. D. Foata. A combinatorial proof of Jacobi's identity. Ann. Discrete Math., 6:125–135, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Garsia and ö. Egecioglu. Combinatorial foundations of computer science. unpublished collection.

    Google Scholar 

  10. I. Gessel. Tournaments and Vandermonde's determinant. J Graph Theory, 3:305–307, 1979.

    MATH  MathSciNet  Google Scholar 

  11. D. Kozen. The Design and Analysis of Algorithms. Springer-Verlag, New York, 1992.

    Google Scholar 

  12. T. F. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers Inc., San Mateo, 1992.

    MATH  Google Scholar 

  13. M. Minoux. Bideterminants, arborescences and extension of the matrix-tree theorem to semirings. Discrete Mathematics, 171:191–200, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Mahajan and V Vinay. Determinant: combinatorics, algorithms, complexity. Chicago Journal of Theoretical Computer Science http://cs-www.uchicago.edu/publications/cjtcs, 1997:5, 1997. A preliminary version appeared as “A combinatorial algorithm for the determinant” in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms SODA97.

    MathSciNet  Google Scholar 

  15. J. B. Orlin. Line-digraphs, arborescences, and theorems of Tutte and Knuth. J. Combin. Theory Ser. B, 25:187–198, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. A. Samuelson. A method of determining explicitly the coefficients of the characteristic polynomial. Ann. Math. Stat., 13:424–429, 1942.

    MATH  MathSciNet  Google Scholar 

  17. V. Strassen. Vermeidung von divisionen. Journal of Reine U. Angew Math, 264:182–202, 1973.

    MathSciNet  Google Scholar 

  18. H. Straubing. A combinatorial proof of the Cayley-Hamilton theorem. Discrete Maths., 43:273–279, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Stanton and D. White. Constructive Combinatorics. Springer-Verlag, 1986.

    Google Scholar 

  20. H. N. V. Tempereley. Graph Theory and Applications. Ellis Horwood, Chichester, 1981.

    Google Scholar 

  21. S. Toda. Counting problems computationally equivalent to the determinant. manuscript, 1991.

    Google Scholar 

  22. L. G. Valiant. Why is boolean complexity theory difficult? In M. S. Paterson, editor, Boolean Function Complexity. Cambridge University Press, 1992. London Mathematical Society Lecture Notes Series 169.

    Google Scholar 

  23. V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proc. 6th Structure in Complexity Theory Conference, pages 270–284, 1991.

    Google Scholar 

  24. D. Zeilberger. A combinatorial approach to matrix algebra. Discrete Mathematics, 56:61–72, 1985.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahajan, M., Vinay, V. (1998). Determinant: Old algorithms, new insights. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054375

Download citation

  • DOI: https://doi.org/10.1007/BFb0054375

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics