Skip to main content

Formal language constrained path problems

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'98 (SWAT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Included in the following conference series:

Abstract

Given an alphabet σ, a (directed) graph G whose edges are weighted and σ-labeled, and a formal language L \(\subseteq\) σ*, we consider the problem of finding a shortest (simple) path p in G complying with the additional constraint that l(p) ∃ L. Here l(p) denotes the unique word given by concatenating the σ-labels in G along the path p.

We consider the computational complexity of the problem for different classes of formal languages (finite, regular, context free and context sensitive), different classes of graphs (unrestricted, grids, treewidth bounded) and different type of path (shortest and shortest simple).

A number of variants of the problem are considered and both polynomial time algorithms as well as hardness results (NP-, PSPACE-hardness) are obtained. The hardness and the polynomial time algorithms presented here are a step towards finding such classes of graphs for which polynomial time query evaluation is possible.

Research supported by the Department of Energy under Contract W-7405-ENG-36.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  2. S. Arnborg, J. Lagergren and D. Seese, “Easy Problems for Tree-Decomposable Graphs,” Journal of Algorithms, vol. 12, pp. 308–340 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Ben-Akiva and S.R. Lerman, Discrete Choice Analysis, MIT Press Series in Transportation Studies, Cambridge, MA, 1985.

    Google Scholar 

  4. V. Blue, J. Adler and G. List, “Real-Time Multiple Objective Path Search for In-Vehicle Route Guidance Systems,” Proc. 76th Annual Meeting of The Transportation Research Board, Washington, D.C. Paper No. 970944, January 1997.

    Google Scholar 

  5. A. Buchsbaum, P. Kanellakis and J. Vitter, “A Data Structure for Arc Insertion and regular Path Finding,” Proc. 1st ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 22–31.

    Google Scholar 

  6. M. Cruz, A. Mendelzon and P. Wood, “A Graphical Query Language Supporting Recursion,” Proc. 9th ACM SIGMOD Conference on Management of Data San Francisco, CA, 1990, 1987, pp. 323–330.

    Google Scholar 

  7. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw-Hill Book Co., 1990.

    Google Scholar 

  8. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman, San Francisco (1979).

    MATH  Google Scholar 

  9. R. Hassin, “Approximation schemes for the restricted shortest path problem”, Mathematics of Operations Research 17, 1 (1992), 36–42.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, Reading MA., 1979.

    MATH  Google Scholar 

  11. R. Jacob, M. Marathe, and K. Nagel, Computational Experiences with Routing Algorithms for Realistic Traffic Networks, in preperation.

    Google Scholar 

  12. D.E. Knuth, “A Generalization of Dijkstra's Algorithm,” Information Proc. Lett., 6(1), pp. 1–5, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Mendelzon and P. Wood, “Finding Regular Simple Paths in Graph Databases,” SIAM J. Computing, vol. 24, No. 6, 1995, pp. 1235–1258.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Scott, G. Pabon-Jimenez and D. Bernstein, “Finding Alternatives to the Best Path,” Proc. 76th Annual Meeting of The Transportation Research Board, Washington, D.C. Paper No. 970682, Jan. '97. Also available as Draft Report Intelligent Transport Systems Program, Princeton University, '97.

    Google Scholar 

  15. H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity, BirkhÄuser, 1994.

    Google Scholar 

  16. C. Barrett, K. Birkbigler, L. Smith, V. Loose, R. Beckman, J. Davis, D. Roberts and M. Williams, An Operational Description of TRANSIMS, Technical Report, LA-UR-95-2393, Los Alamos National Laboratory, 1995.

    Google Scholar 

  17. R. Tarjan, “A Unified Approach to Path Problems,” J. ACM Vol. 28, No. 3, 1981, pp. 577–593.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Orda and R. Rom, “Shortest Path and Minimium Delay Algorithms in Networks with Time Dependent Edge Lengths,” J. ACM Vol. 37, No. 3, 1990, pp. 607–625.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Ramalingam and T. Reps, “An incremental Algorithm for a Generalization of the Shortest-Path Problem,” J. Algorithms, 21(2):267–305, September 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Yannakakis “Graph Theoretic Methods in DataBase Theory,” Proc. 9th ACM SIGACT-SIGMOD-SIGART Symposium on Database Systems (ACM-PODS), Nashville TN, 1990, pp. 230–242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barrett, C., Jacob, R., Marathe, M. (1998). Formal language constrained path problems. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054371

Download citation

  • DOI: https://doi.org/10.1007/BFb0054371

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics