Advertisement

The geometry of browsing

Invited paper
  • Richard Beigel
  • Egemen Tanin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1380)

Abstract

We present a geometric counting problem that arises in browsing and solve it in constant time per query using nonexhaustive tables. On the other hand, we prove that several closely related problems require exhaustive tables, no matter how much time we allow per query.

Keywords

Unit Cube Information Visualization Generalize Interval Query Algorithm Query Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlberg, C. and Shneiderman, B., Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays, Proc. ACM SIGCHI (1994) 313–317Google Scholar
  2. 2.
    Ahlberg, C. and Wistrand, E., IVEE: An Information Visualization and Exploration Environment, Proc. IEEE Info. Vis., (1995) 66–73Google Scholar
  3. 3.
    Bestul, T., Parallel paradigms and practices for spatial data, Ph.D. Thesis, Univ. Maryland Dept. Comp. Sci., TR-2897, (1992)Google Scholar
  4. 4.
    Doan, K., Plaisant, C., and Shneiderman, B., Query Previews in Networked Information Systems, Proc. Forum Adv. Digit. Libr., IEEE Comp. Soc. Press, (1996) 120–129Google Scholar
  5. 5.
    Eick, S., Data Visualization Sliders, Proc. User Interf. Softw. Techn. (1994) 119–120Google Scholar
  6. 6.
    HCIL, http://www.cs.umd.edu/projects/hcil/Research/1995/dq-for-eosdis.htmlGoogle Scholar
  7. 7.
    Fishkin, K. and Stone, M. C., Enhanced Dynamic Queries via Movable Filters, Proc. ACM SIGCHI (1995) 415–420Google Scholar
  8. 8.
    Goldstein, J. and Roth, S. F., Using Aggregation and Dynamic Queries for Exploring Large Data Sets, Proc. ACM SIGCHI (1994) 23–29Google Scholar
  9. 9.
    Harary, F., Graph Theory, Addison-Wesley (1969)Google Scholar
  10. 10.
    HCIL, ftp://ftp.cs.umd.edu/pub/hcil/Demos/DQ/dq-home.zip. Down-loadable PC demonstration.Google Scholar
  11. 11.
    Ioannidis, Y., Dynamic Information Visualization, ACM SIGMOD Rec., 25 (1996) 16–20CrossRefGoogle Scholar
  12. 12.
    Information Visualization and Exploration Environment (IVEE) Development AB, http://www.ivee.com/. Online Java demo and down-loadable demos for various platformsGoogle Scholar
  13. 13.
    Shneiderman, B., Dynamic Queries for Visual Information Seeking, IEEE Softw., 11 (1994) 70–77CrossRefGoogle Scholar
  14. 14.
    Shneiderman, B., Racing to the winning line with visual data mining, http://www.ivee.com/corporate/columns/race.htmlGoogle Scholar
  15. 15.
    Tanin, E., Beigel, R., and Shneiderman, B., Incremental Data Structures and Algorithms for Dynamic Query Interfaces, ACM SIGMOD Rec., 25 (1996) 21–24CrossRefGoogle Scholar
  16. 16.
    Williamson, C. and Shneiderman, B., The Dynamic HomeFinder: Evaluating Dynamic Queries in a Real-Estate Information Exploration System, Proc. ACM SIGIR (1992) 339–346Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Richard Beigel
    • 1
  • Egemen Tanin
    • 2
  1. 1.Dept. of EE&CSLehigh UniversityBethlehemUSA
  2. 2.Human-Computer Interaction LaboratoryUniversity of MarylandCollege ParkUSA

Personalised recommendations