Skip to main content

The CREW PRAM complexity of modular inversion

  • Conference paper
  • First Online:
  • 100 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1380))

Abstract

One of the long-standing open questions in the theory of parallel computation is the parallel complexity of the integer gcd and related problems, such as modular inversion. We present a lower bound Ω(log n) for the CREW PRAM complexity for inversion modulo certain n-bit integers, including all such primes. For infinitely many moduli, our lower bound matches asymptotically the known upper bound. We obtain a similar lower bound for computing a specified bit in a large power of an integer. Our main tools are certain estimates for exponential sums in finite fields.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman and K. Kompella, ‘Using smoothness to achieve parallelism', Prac. 20th ACM Symp. on Theory of Comp., (1988), 528–538.

    Google Scholar 

  2. P. W. Beame, S. A. Cook and H. J. Hoover, ‘Log depth circuits for division and related problems', SIAM J. Comp., 15 (1986) 994–1003.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. A. Cook, C. Dwork and R. Reischuk, ‘Upper and lower time bounds for parallel random access machines without simultaneous writes', SIAM J. Comp., 15 (1986), 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Coppersmith and I. E. Shparlinski, ‘On polynomial approximation and the parallel complexity of the discrete logarithm and breaking the Diffie-Hellman cryptosystem', Research Report RC 20724, IBM T. J. Watson Research Centre, 1997, 1–103.

    Google Scholar 

  5. M. Dietzfelbinger, M. Kutylowski and R. Reischuk, ‘Exact time bounds for computing Boolean functions on PRAMs without simultaneous writes', J. Comp. and Syst. Sci., 48 (1994), 231–254.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Dietzfelbinger, M. Kutyłowski and R. Reischuk, ‘Feasible time-optimal algorithms for Boolean functions on exclusive-write parallel random access machine', SIAM J. Comp., 25 (1996), 1196–1230.

    Article  MATH  Google Scholar 

  7. F. E. Fich, ‘The complexity of computation on the parallel random access machine', Handbook of Theoretical Comp. Sci., Vol.A, Elsevier, Amsterdam, 1990, 757–804.

    Google Scholar 

  8. E. Fich and M. Tompa, ‘The parallel complexity of exponentiating polynomials over finite fields', J. ACM, 35 (1988), 651–667.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Gao, J. von zur Gathen and D. Panario, ‘Gauss periods and fast exponentiation in finite fields', Lecture Notes in Comp. Sci., 911 (1995), 311–322.

    Google Scholar 

  10. J. von zur Gathen, ‘Computing powers in parallel', SIAM J. Comp., 16 (1987), 930–945.

    Article  MATH  Google Scholar 

  11. J. von zur Gathen, ‘Inversion in finite fields using logarithmic depth', J. Symb. Comp., 9 (1990), 175–183.

    Article  MATH  Google Scholar 

  12. J. von zur Gathen, ‘Efficient and optimal exponentiation in finite fields', Comp. Complexity, 1 (1991), 360–394.

    Article  MATH  Google Scholar 

  13. J. von zur Gathen, ‘Processor-efficient exponentiation in finite fields', Inform. Proc. Letters, 41 (1992), 81–86.

    Article  MATH  Google Scholar 

  14. J. von zur Gathen and G. Seroussi, ‘Boolean circuits versus arithmetic circuits', Inform, and Comp., 91 (1991), 142–154.

    Article  MATH  Google Scholar 

  15. L.-K. Hua, Introduction to number theory, Springer-Verlag, 1982.

    Google Scholar 

  16. D. Ismailov, ‘On a method of Hua Loo-Keng of estimating complete trigonometric sums', Adv. Math. (Benijing), 23 (1992), 31–49.

    Google Scholar 

  17. R. Kannan, G. Miller and L. Rudolph, ‘Sublinear parallel algorithm for computing the greatest common divisor of two integers', SIAM J. Comp., 16 (1987), 7–16.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, MA, 1983.

    MATH  Google Scholar 

  19. B. E. Litow and G. I. Davida, ‘O(log(n)) parallel time finite field inversion', Lect. Notes in Comp. Science, 319 (1988), 74–80.

    Article  MathSciNet  Google Scholar 

  20. M. Mnuk, ‘A div (n) depth Boolean circuit for smooth modular inverse', Inform. Proc. Letters, 38 (1991), 153–156.

    Article  MATH  MathSciNet  Google Scholar 

  21. I. Parberry and P. Yuan Yan, ‘Improved upper and lower time bounds for parallel random access machines without simultaneous writes', SIAM J. Comp., 20 (1991), 88–99.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. B. Rosser and L. Schoenfeld, ‘Approximate formulas for some functions of prime numbers', Ill. J. Math. 6 (1962), 64–94.

    MathSciNet  MATH  Google Scholar 

  23. I. E. Shparlinski, Computational and algorithmic problems in finite fields, Kluwer Acad. Publ., Dordrecht, The Netherlands, 1992.

    MATH  Google Scholar 

  24. I. E. Shparlinski, ‘Number theoretic methods in lower bounds of the complexity of the discrete logarithm and related problems', Preprint, 1997, 1–168.

    Google Scholar 

  25. I. E. Shparlinski and S. A. Stepanov, ‘Estimates of exponential sums with rational and algebraic functions', Automorphic Functions and Number Theory, Vladivostok, 1989, 5–18 (in Russian).

    Google Scholar 

  26. S. B. Steckin, ‘An estimate of a complete rational exponential sum', Proc. Math. Inst. Acad. Sci. of the USSR, Moscow, 143 (1977), 188–207 (in Russian).

    MathSciNet  Google Scholar 

  27. I. Wegener, The complexity of Boolean functions, Wiley Interscience Publ., 1987.

    Google Scholar 

  28. A. Weil, Basic number theory, Springer-Verlag, NY, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cláudio L. Lucchesi Arnaldo V. Moura

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van zur Gathen, J., Shparlinski, I. (1998). The CREW PRAM complexity of modular inversion. In: Lucchesi, C.L., Moura, A.V. (eds) LATIN'98: Theoretical Informatics. LATIN 1998. Lecture Notes in Computer Science, vol 1380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054331

Download citation

  • DOI: https://doi.org/10.1007/BFb0054331

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64275-6

  • Online ISBN: 978-3-540-69715-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics