Spectral techniques in graph algorithms

Invited paper
  • Noga Alon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1380)


The existence of efficient algorithms to compute the eigenvectors and eigenvalues of graphs supplies a useful tool for the design of various graph algorithms. In this survey we describe several algorithms based on spectral techniques focusing on their performance for randomly generated input graphs.


Random Graph Polynomial Time Algorithm Chromatic Number Graph Algorithm Spectral Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alon, Eigenvalues and expanders, Combinatorial 6 (1986), 83–96.zbMATHMathSciNetGoogle Scholar
  2. 2.
    N. Alon and R. B. Boppana, The monotone circuit complexity of Boolean functions, Combinatorica 7 (1987), 1–22.MathSciNetGoogle Scholar
  3. 3.
    N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, Proc. of the 26th ACM STOC, ACM Press (1994), 346–355. Also; SIAM J. Comput., in press.Google Scholar
  4. 4.
    N. Alon and N. Kahale, Approximating the independence number via the θ-function, Math. Programming, in press.Google Scholar
  5. 5.
    N. Alon, M. Krivelevich and B. Sudakov, Finding a large hidden clique in a random graph, Proc. of the Ninth Annual ACM-SIAM SODA, ACM Press (1998), to appear.Google Scholar
  6. 6.
    N. Alon and V. D. Milman, Eigenvalues, expanders and superconcentrators, Proc. 25 th Annual Symp. on Foundations of Computer Science, Singer Island, Florida, IEEE (1984), 320–322. (Also: λ1, isoperimetric inequalities for graphs and superconcentrators, J. Combinatorial Theory, Ser. B 38 (1985), 73–88.)Google Scholar
  7. 7.
    N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, New York, 1992.Google Scholar
  8. 8.
    S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and intractability of approximation problems, Proc. of the 33rd IEEE FOCS, IEEE (1992), 14–23.Google Scholar
  9. 9.
    S. Arora and S. Safra, Probabilistic checking of proofs; a new characterization of NP, Proc. of the 33rd IEEE FOCS, IEEE (1992), 2–13.Google Scholar
  10. 10.
    R. Boppana and M. M. Halldórsson, Approximating maximum independent sets by excluding subgraphs, BIT, 32 (1992),180–196.CrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Blum, Some tools for approximate 3-coloring, Proc. 31st IEEE FOCS, IEEE (1990), 554–562.Google Scholar
  12. 12.
    T.N. Bui and C. Jones, Finding good approximate vertex and edge partitions is NP-hard, Infor. Proc. Letters 42 (1992), 153–159.CrossRefMathSciNetGoogle Scholar
  13. 13.
    A. Blum and D. Karger, An ~O(n3/14)-colormg algorithm for 3-colorable graphs, IPL 61 (1997), 49–53.CrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Bollobás, Random Graphs, Academic Press, London, 1985.Google Scholar
  15. 15.
    A. Blum and J. H. Spencer, Coloring random and semi-random k-colorable graphs, Journal of Algorithms 19 (1995), 204–234.CrossRefMathSciNetGoogle Scholar
  16. 16.
    R. Boppana, Eigenvalues and graph bisection: An average case analysis, Proc. 28th IEEE FOCS, IEEE (1987), 280–285.Google Scholar
  17. 17.
    F. Chung and S. T. Yau, Eigenvalues, flows and separators of graphs, to appear.Google Scholar
  18. 18.
    M. E. Dyer and A. M. Frieze, The solution of some random NP-Hard problems in polynomial expected time, Journal of Algorithms 10 (1989), 451–489.CrossRefMathSciNetGoogle Scholar
  19. 19.
    W. E. Donath and A. J. Hoffman, Lower bounds for the partitioning of graphs, J. Res. Develop. 17 (1973), 420–425.MathSciNetGoogle Scholar
  20. 20.
    P. Erdós and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), 17–61.Google Scholar
  21. 21.
    M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23(98) (1973), 298–305.zbMATHMathSciNetGoogle Scholar
  22. 22.
    U. Feige, S. Goldwasser, L. Lovász, S. Safra and M. Szegedy, Approximating Clique is almost NP-complete, Proc. of the 32nd IEEE FOCS, IEEE (1991), 2–12.Google Scholar
  23. 23.
    Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233–241.MathSciNetGoogle Scholar
  24. 24.
    U. Feige and J. Kilian, Zero knowledge and the chromatic number, Proc. 11th Annual IEEE Conf. on Computational Complexity, 1996.Google Scholar
  25. 25.
    J. Friedman, J. Kahn and E. Szemerédi, On the second eigenvalue in random regular graphs, Proc. 21st ACM STOC, ACM Press (1989), 587–598.Google Scholar
  26. 26.
    A. Frieze and C. McDiarmid, Algorithmic theory of random graphs, Random Structures and Algorithms 10 (1997), 5–42.CrossRefMathSciNetGoogle Scholar
  27. 27.
    M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, Freeman and Company, 1979.Google Scholar
  28. 28.
    J. Håstad, Clique is hard to approximate within n 1−∃, Proc. 37th IEEE FOCS, IEEE (1996), 627–636.Google Scholar
  29. 29.
    A. J. Hoffman, On eigenvalues and colorings of graphs, in: B. Harris Ed., Graph Theory and its Applications, Academic, New York and London, 1970, 79–91.Google Scholar
  30. 30.
    M. Jerrum, Large cliques elude the metropolis process, Random Structures and Algorithms 3 (1992), 347–359.zbMATHMathSciNetGoogle Scholar
  31. 31.
    R. M. Karp, Reducibility among combinatorial problems, In: Complexity of computer computations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press, New York, 1972, pp. 85–103.Google Scholar
  32. 32.
    R. M. Karp, Probabilistic analysis of some combinatorial search problems, In: Algorithms and Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, New York, 1976, pp. 1–19.Google Scholar
  33. 33.
    L. Kučera, Expected behavior of graph colouring algorithms, In Lecture Notes in Computer Science No. 56, Springer-Verlag, 1977, pp. 447–451.Google Scholar
  34. 34.
    L. Kučera, Expected complexity of graph partitioning problems, Discrete Applied Math. 57 (1995), 193–212.CrossRefGoogle Scholar
  35. 35.
    D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semi-definite programming, In 35th Symposium on Foundations of Computer Science, pages 2–13. IEEE Computer Society Press, 1994.Google Scholar
  36. 36.
    L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Information Theory IT-25, (1979), 1–7.CrossRefGoogle Scholar
  37. 37.
    L. Lovász, Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979, Chapter 11.Google Scholar
  38. 38.
    F. T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms, Proc 29th annual FOCS (1988), 422–431.Google Scholar
  39. 39.
    R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36(1979), 177–189.CrossRefMathSciNetGoogle Scholar
  40. 40.
    C. Lund and M. Yannakakis, On the hardness of approximating minimization problems. Proc. 25th ACM STOC (1993), 286–293.Google Scholar
  41. 41.
    D. W. Matula, On the complete subgraph of a random graph, Combinatory Mathematics and its Applications, Chapel Hill, North Carolina (1970), 356–369.Google Scholar
  42. 42.
    A. Pothem, H. D. Simon and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl. 11 (1990), 430–452.CrossRefMathSciNetGoogle Scholar
  43. 43.
    A. D. Petford and D. J. A. Welsh, A randomised 3-colouring algorithm, Discrete Mathematics, 74 (1989), 253–261.CrossRefMathSciNetGoogle Scholar
  44. 44.
    A. Ralston, A First Course in Numericad Analysis, McGraw-Hill, 1985, Section 10.4.Google Scholar
  45. 45.
    A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions, Dokl. Ak. Nauk. SSSR 281 (1985), 798–801 (in Russian). English translation in: Sov. Math. Dokl. 31 (1985), 354–357.zbMATHMathSciNetGoogle Scholar
  46. 46.
    M. Saks, Private communication.Google Scholar
  47. 47.
    H. D. Simon, Partitioning of unstructured problems for parallel processing, Computing Systmes in Engineering 2(2/3) (1991), 135–148.CrossRefGoogle Scholar
  48. 48.
    A. Sinclair and M. R. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov chains, Information and Computation 82 (1989), 93–133.CrossRefMathSciNetGoogle Scholar
  49. 49.
    D. A. Spielman and S.-H. Teng, Spectral partitioning works: planar graphs and finite element meshes, to appear.Google Scholar
  50. 50.
    J. S. Turner, Almost all k-colorable graphs are easy to color, Journal of Algorithms 9 (1988), 63–82.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Noga Alon
    • 1
  1. 1.Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations