Advertisement

Shape reconstruction with Delaunay complex

Invited paper
  • Herbert Edelsbrunner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1380)

Abstract

The reconstruction of a shape or surface from a finite set of points is a practically significant and theoretically challenging problem. This paper presents a unified view of algorithmic solutions proposed in the computer science literature that are based on the Delaunay complex of the points.

Keywords

Surface Reconstruction Medial Axis Voronoi Cell Geometric Realization Homotopy Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Alexandrov. über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung. Math. Ann. 98 (1928), 617–635.CrossRefMathSciNetGoogle Scholar
  2. 2.
    N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Manuscript, 1998.Google Scholar
  3. 3.
    N. Amenta, M. Bern and D. Eppstein. The crust and the Β-skeleton: combinatorial curve reconstruction. Graphical Models and Image Process., to appear.Google Scholar
  4. 4.
    D. Attali. r-regular shape reconstruction from unorganized points. In “Proc. 13th Ann. Sympos. Comput. Geom., 1997”, 248–253.Google Scholar
  5. 5.
    F. Aurenhammer. Voronoi diagrams — a study of a fundamental geometric data structure. ACM Comput. Surveys 23 (1991), 345–405.CrossRefGoogle Scholar
  6. 6.
    D. Avis and J. Horton. Remarks on the sphere of influence graph. In “Proc. Conf. Discrete Geom. Convexity”, J. E. Goodman et al. (eds.), Ann. New York Acad. Sci. 440 (1985), 323–327.Google Scholar
  7. 7.
    C. L. Bajaj, F. Bernardini and G. Xu. Automatic reconstruction of surfaces and scalar fields from 3D scans. Comput. Graphics, Proc. siggraph 1995, 109–118.Google Scholar
  8. 8.
    F. Bernardini and C. L. Bajaj. Sampling and reconstructing manifolds using α-shapes. In “Proc. 9th Canadian Conf. Comput. Geom., 1997”, 193–198.Google Scholar
  9. 9.
    J.-D. Boissonnat. Geometric structures for three-dimensional shape representation. ACM Trans. Graphics 3 (1984), 266–286.CrossRefGoogle Scholar
  10. 10.
    J.-D. Boissonnat and B. Geiger. Three-dimensional reconstruction of complex shapes based on the Delaunay triangulation. In “Proc. Biomedical Image Process. Biomed. Visualization, 1993”, 964–975.Google Scholar
  11. 11.
    J. Brandt and V. R. Algazi. Continuous skeleton computation by Voronoi diagram. Comput. Vision, Graphics, Image Process. 55 (1992), 329–338.zbMATHGoogle Scholar
  12. 12.
    C. Bregler and S. M. Omohundro. Nonlinear manifold learning for visual speech recognition. In “Proc. 5th Internat. Conf. Comput. Vision, 1995”, 494–499.Google Scholar
  13. 13.
    M. Burns. Automated Fabrication. Improving Productivity in Manufacturing. Prentice Hall, Englewood Cliffs, New Jersey, 1993.Google Scholar
  14. 14.
    L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In “Proc. 9th Ann. Sympos. Comput. Geom., 1993”, 274–280.Google Scholar
  15. 15.
    B. Curless and M. Levoy. A volumetric method for building complex models from range images. Comput. Graphics, Proc. siggraph 1996, 303–312.Google Scholar
  16. 16.
    W. D'Arcy Thompson. Growth and Form. Cambridge Univ. Press, 1917.Google Scholar
  17. 17.
    H. Edelsbrunner. The union of balls and its dual shape. Discrete Comput. Geom. 13 (1995), 415–440.zbMATHMathSciNetGoogle Scholar
  18. 18.
    H. Edelsbrunner. Surface reconstruction by wrapping finite sets in space. Rept. rgi-tech-96-001, Raindrop Geomagic, Urbana, Illinois, 1996.Google Scholar
  19. 19.
    H. Edelsbrunner, D. G. Kirkpatrick and R. Seidel. On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29 (1983), 551–559.CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graphics 9 (1990), 66–104.CrossRefzbMATHGoogle Scholar
  21. 21.
    H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics 13 (1994), 43–72.CrossRefzbMATHGoogle Scholar
  22. 22.
    H. Edelsbrunner, G. Rote and E. Welzl. Testing the necklace condition for shortest tours and optimal factors in the plane. Theoret. Comput. Sci. 66 (1989), 157–180.CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    H. Edelsbrunner and N. R. Shah. Triangulating topological spaces. Internat. J. Comput. Geom. Appl. 7 (1997), 365–378.CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    A. Flores. über die Existenz n-dimensionaler Komplexe, die nicht in den ℝ2n topologisch einbettbar sind. Ergeb. Math. Kolloq. 5 (1932/33), 17–24.Google Scholar
  25. 25.
    H. Fuchs, Z. M. Kedem and S. P. Uselton. Optimal surface reconstruction from planar contours. Commun. ACM 20 (1977), 693–702.CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    H. Hoppe, T. de Rose, T. Duchamp, J. McDonald, and W. Stützle. Surface reconstruction from unorganized points. Comput. Graphics, Proc. siggraph 1992, 71–78.Google Scholar
  27. 27.
    D. G. Kirkpatrick and J. D. Radke. A framework for computational morphology. In Computational Morphology, G. Toussaint (ed.), Elsevier (1985), 217–248.Google Scholar
  28. 28.
    B. Lee and F. M. Richards. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55 (1971), 379–400.CrossRefGoogle Scholar
  29. 29.
    J. Leray. Sur la forme des espaces topologiques et sur les point fixes des représentations. J. Math. Pures Appl. 24 (1945), 95–167.zbMATHMathSciNetGoogle Scholar
  30. 30.
    J. Liang, H. Edelsbrunner and C. Woodward. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Manuscript, 1997.Google Scholar
  31. 31.
    S. K. Lodha and R. Franke. Scattered data techniques for surfaces. In Scientific Visualization: Methods and Applications, G. M. Nielson, H. Hagen and F. Post (eds.), Springer-Verlag, Heidelberg, to appear.Google Scholar
  32. 32.
    W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graphics 21, Proc. siggraph 1987, 163–169.Google Scholar
  33. 33.
    T. Martinetz and K. Schulten. Topology representing networks. Neural Networks 7 (1994), 507–522.CrossRefGoogle Scholar
  34. 34.
    M. Melkemi. A-shapes of a finite point set. Correspondence in “Proc. 13th Ann. Sympos. Comput. Geom., 1997”, 367–369.Google Scholar
  35. 35.
    D. Meyers, S. Skinner and K. Sloan. Surfaces from contours. ACM Trans. Graphics 11 (1992), 228–258.CrossRefzbMATHGoogle Scholar
  36. 36.
    Y.-L. O, A. Toet, D. Foster, H. J. A. M. Heijmans and P. Meer (eds.) Shape in Picture. Mathematical Description of Shape in Grey-level images. NATO ASI Series F: Computer and Systems Sciences 126, Springer-Verlag, Berlin, 1994.zbMATHGoogle Scholar
  37. 37.
    Raindrop Geomagic, Inc. www.geomagic.com.Google Scholar
  38. 38.
    G. P. Robinson, A. C. F. Colchester, L. D. Griffin and D. J. Hawkes. Integrated skeleton and boundary shape representation for medical image interpretation. In “Proc. European Conf. Comput. Vision, 1992”, 725–729.Google Scholar
  39. 39.
    R. Thom. Structural Stability and Morphogenesis. Addison Wesley, Reading, Massachusetts, 1989.zbMATHGoogle Scholar
  40. 40.
    E. R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg 9 (1933), 72–78.CrossRefGoogle Scholar
  41. 41.
    R. C. Veltkamp. Closed Object Boundaries from Scattered Points. Springer-Verlag, Berlin, 1994.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Herbert Edelsbrunner
    • 1
  1. 1.Dept. Comput. Sci.Univ. Illinois at Urbana-Champaign, and Raindrop GeomagicChampaignUSA

Personalised recommendations