Skip to main content

An Eilenberg theorem for words on countable ordinals

  • Conference paper
  • First Online:
Book cover LATIN'98: Theoretical Informatics (LATIN 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1380))

Included in the following conference series:

Abstract

We present in this paper an algebraic approach to the theory of languages of words on countable ordinals. The algebraic structure used, called an Ω1-semigroup, is an adaptation of the one used in the theory of regular languages of Ω-words. We show that finite Ω1-semigroups are equivalent to automata. In particular, the proof gives a new algorithm for determinizing automata on countable ordinals. As in the cases of finite and Ω-words, a syntactic Ω1-semigroup can effectively be associated with any regular language of words on countable ordinals. This result is used to prove an Eilenberg type theorem. There is a one-to-one correspondence between varieties of Ω1-languages and pseudo-varieties of Ω1-semigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Almeida. Finite semigroups and universal algebra, volume 3 of Series in algebra. World Scientific, 1994.

    Google Scholar 

  2. A. Arnold. A syntactic congruence for rational Ω-languages. Theoretical Computer Science, 39:333–335, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Bedon. Automata, semigroups and recognizability of words on ordinals. IGM report 96-5, to appear in International Journal of Algebra and Computation.

    Google Scholar 

  4. N. Bedon. Star-free sets of words on ordinals. IGM report 97-8, submitted to Information and Computation.

    Google Scholar 

  5. J. R. Büchi. On a decision method in the restricted second-order arithmetic. In Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960, pages 1–11. Stanford University Press, 1962.

    Google Scholar 

  6. J. R. Büchi. Transfinite automata recursions and weak second order theory of ordinals. In Proc. Int. Congress Logic, Methodology, and Philosophy of Science, Jerusalem 1964, pages 2–23. North-Holland, 1965.

    Google Scholar 

  7. Y. Choueka. Finite automata, definable sets, and regular expressions over Ωn-tapes. J. Comp. Syst. Sci., 17:81–97, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Eilenberg. Automata, languages and machines, volume B. Academic Press, 1976.

    Google Scholar 

  9. J.-P. Pécuchet. Etude syntaxique des parties reconnaissables de mots infinis. Lecture Notes in Computer Science, 226:294–303, 1986.

    MATH  Google Scholar 

  10. J.-P. Pécuchet. Variétés de semigroupes et mots infinis. Lecture Notes in Computer Science, 210:180–191, 1986.

    MATH  Google Scholar 

  11. D. Perrin. Recent results on automata and infinite words. In M. P. Chytil and V. Koubek, editors, Mathematical foundations of computer science, volume 176 of Lecture Notes in Computer Science, pages 134–148, Berlin, 1984. Springer.

    Google Scholar 

  12. D. Perrin and J.-E. Pin. Semigroups and automata on infinite words. In J. Fountain and V. A. R. Gould, editors, NATO Advanced Study Institute Semigroups, Formal Languages and Groups, pages 49–72. Kluwer academic publishers, 1995.

    Google Scholar 

  13. J.-E. Pin. Handbook of formal languages, volume 1, chapter Syntactic semigroups, pages 679–746. Springer, 1997.

    Google Scholar 

  14. S. Rohde. Alternating automata and the temporal logic of ordinals. PhD thesis, University of Illinois, Urbana-Champaign, 1997.

    Google Scholar 

  15. J. G. Rosenstein. Linear ordering. Academic Press, New York, 1982.

    Google Scholar 

  16. M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Thérien and T. Wilke. Temporal logic and semidirect products: An effective characterization of the until hierarchy. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, 1996. To appear.

    Google Scholar 

  18. T. Wilke. An Eilenberg theorem for ∞-languages. In Automata, Languages and Programming: Proc. of 18th ICALP Conference, pages 588–599. Springer, 1991.

    Google Scholar 

  19. J. Wojciechowski. Finite automata on transfinite sequences and regular expressions. Fundamenta information, 8(3–4):379–396, 1985.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cláudio L. Lucchesi Arnaldo V. Moura

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bedon, N., Carton, O. (1998). An Eilenberg theorem for words on countable ordinals. In: Lucchesi, C.L., Moura, A.V. (eds) LATIN'98: Theoretical Informatics. LATIN 1998. Lecture Notes in Computer Science, vol 1380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054310

Download citation

  • DOI: https://doi.org/10.1007/BFb0054310

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64275-6

  • Online ISBN: 978-3-540-69715-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics