Advertisement

Super-state automata and rational trees

  • Frédérique Bassino
  • Marie -Pierre Béal
  • Dominique Perrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1380)

Abstract

We introduce the notion of super-state automata constructed from other automata. This construction is used to solve an open question about enumerative sequences in rational trees. We prove that any IN-rational sequence s=(s n)n≥0 of nonnegative integers satisfying the Kraft inequality σn≥0 s n k n ≤1 is the enumerative sequence of leaves by height of a k-ary rational tree. This result had been conjectured and was known only in the case of strict inequality. We also give a new proof of a result about enumerative sequences of nodes in k-ary rational trees.

Keywords

Rational Tree Adjacency Matrix Finite Automaton Outgoing Edge Rational Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Adler, D. Coppersmith, and M. Hassner. Algorithms for sliding block codes. I.E.E.E. Trans. Inform. Theory, IT-29:5–22, 1983.CrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Bassino, M.-P. Béal, and D. Perrin. Enumerative sequences of leaves and nodes in rational trees. Theoret. Comput. Sci., 1997. (to appear).Google Scholar
  3. 3.
    F. Bassino, M.-P. Béal, and D. Perrin. Enumerative sequences of leaves in rational trees. In ICALP'97, LNCS 1256, pages 76–86. Springer, 1997.Google Scholar
  4. 4.
    M.-P. Béal. Codage Symbolique. Masson, 1993.Google Scholar
  5. 5.
    M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 2, chapter 10. Springer-Verlag, 1997.Google Scholar
  6. 6.
    J. Berstel and C. Reutenauer. Rational Series and their Languages Springer-Verlag, 1988.Google Scholar
  7. 7.
    D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding Cambridge, 1995.Google Scholar
  8. 8.
    B. Marcus. Factors and extensions of full shifts. Monats.Math, 88:239–247, 1979.zbMATHCrossRefGoogle Scholar
  9. 9.
    D. Perrin. Arbres et séries rationnelles. C.R.A.S. Paris, Série I, 309:713–716, 1989.zbMATHMathSciNetGoogle Scholar
  10. 10.
    D. Perrin. A conjecture on rational sequences. In R. Capocelli, editor, Sequences, pages 267–274. Springer-Verlag, 1990.Google Scholar
  11. 11.
    A. Salomaa and M. Soittola. Automata-theoretic Aspect of Formal Power Series. Springer-Verlag, Berlin, 1978.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Frédérique Bassino
    • 1
  • Marie -Pierre Béal
    • 2
  • Dominique Perrin
    • 1
  1. 1.Institut Gaspard MongeUniversité de Marne-la-ValléeNoisy le Grand CedexFrance
  2. 2.Institut Gaspard MongeUniversité Paris 7France

Personalised recommendations