Faster non-linear parametric search with applications to optimization and dynamic geometry

  • David Fernández-Baca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1380)


A technique for accelerating certain applications of parametric search to non-linear problems is presented, together with its applications to optimization on weighted graphs and to two problems in dynamic geometry on points moving in straight-line trajectories: computing the minimum diameter over all time and finding the time at which the length of the maximum spanning tree is minimized.


Span Tree Parallel Algorithm Voronoi Diagram Parametric Search Computation Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pankaj Agarwal and Jiri Matousek. Ray shooting and parametric search. SIAM J. Computing, 22:794–806, 1993.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Pankaj K. Agarwal, Micha Sharir, and Sivan Toledo. Applications of parametric search to geometric optimization. Journal of Algorithms, 17:292–318, 1994.CrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in clog n parallel steps. Combinatorial, pages 1–19, 1983.Google Scholar
  4. 4.
    Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Parallel algorithms for higher-dimensional convex hulls. In Proceedings 35th IEEE Symp. on Foundations of Computer Science, pages 683–694, 1994.Google Scholar
  5. 5.
    Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bernard Chazelle, Herbert Edelsbrunner, Leonidas Guibas, and Micha Sharir. Diameter, width, closest line pair, and parametric searching. Discrete Comput. Geom., 10:183–196, 1993.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc. Comput. Mach., 34(1):200–208, 1987.MathSciNetGoogle Scholar
  8. 8.
    Richard Cole. Parallel merge sort. SIAM J. Computing, 17(4):770–785, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    David Fernández-Baca and Giora Slutzki. Optimal parametric search on graphs of bounded tree-width. Journal of Algorithms, 22:212–240, 1997.CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    P. Gupta, Ravi Janardan, and Michiel Smid. Fast algorithms for collision and proximity problems involving moving geometric objects. Computational Geometry: Theory and Applications, 6:371–391, 1996.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Joseph Ja'Ja'. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.Google Scholar
  12. 12.
    Naoki Katoh, Takeshi Tokuyama, and Kazuo Iwano. On minimum and maximum spanning trees of linearly moving sets of points. Discrete Comput. Geom., 13:161–176, 1995.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nimrod Megiddo. Combinatorial optimization with rational objective functions. Math. Oper. Res., 4:414–424, 1979.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. Assoc. Comput. Mach., 30(4):852–865, 1983.zbMATHMathSciNetGoogle Scholar
  15. 15.
    Russ Miller and Quentin F. Stout. Efficient parallel convex hull algorithms. IEEE Trans. Computers, C-37:1605–1618, 1988.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Clyde Monma, Michael Paterson, Subhash Suri, and Frances Yao. Computing Euclidean maximum spanning trees. Algorithmica, 5:407–419, 1990.CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.Google Scholar
  18. 18.
    Jörg Schwerdt, Michiel Smid, and Stefan Schirra. Computing the minimum diameter for moving points: an exact implementation using parametric search. In 13th ACM Symposium on Computational Geometry, Nice, France, 1997.Google Scholar
  19. 19.
    Sivan Toledo. Maximizing non-linear concave functions in fixed dimension, pages 429–447. World Scientific, Singapore, 1993.Google Scholar
  20. 20.
    Sivan Toledo and Micha Sharir. Extremal polygon containment problems. Computational Geometry: Theory and Applications, 4:99–118, 1994.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • David Fernández-Baca
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations