Skip to main content

Protocol failures related to order of encryption and signature computation of discrete logarithms in RSA groups

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1438))

Included in the following conference series:

Abstract

In [2], Anderson and Needham describe the kernel of a general attack against protocols that encrypt before signing. The Anderson-Needham attack allows the receiver of an encrypted, signed message to take the sender's valid signature and forge another message for which the signature remains valid. In this paper, we complete the attack for the case where RSA [11] is the encryption algorithm, extend its application, and discuss practical issues related to implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Needham, R.: SRC Research Report 125: Prudent Engineering Practice for Cryptographic Protocols. Digital Systems Research Center, Palo Alto (1994)

    Google Scholar 

  2. Anderson, R., Needham, R.: Robustness Principles for Public Key Protocols. In: Coppersmith, D. (ed.): Advances in Cryptology — CRYPTO '95. Lecture Notes in Computer Science, Vol. 963. Springer-Verlag, Berlin Heidelberg (1995) 236–247

    Google Scholar 

  3. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin Heidelberg (1993)

    Google Scholar 

  4. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In: Blakley, G.R., Chaum, D. (eds.): Advances in Cryptology — CRYPTO '84. Lecture Notes in Computer Science, Vol. 196. Springer-Verlag, Berlin Heidelberg (1985) 10–18

    Google Scholar 

  5. ITU-T X.509 and ISO 9594-8. Information Technology—Open Systems Interconnection — The Directory: Authentication Framework. Geneva (1993)

    Google Scholar 

  6. ISO/IEC CD 11770-3. Information technology—Security techniques — Key management — Part 3: Mechanisms using asymmetric techniques. Geneva (1996)

    Google Scholar 

  7. Johnson, D., Matyas, S.: Asymmetric Encryption: Evolution and Enhancements. In: RSA Laboratories' CryptoBytes, 2(1). RSA Laboratories, Redwood City (Spring 1996) 1–6

    Google Scholar 

  8. NBS FIPS PUB 46: Data Encryption Standard. National Bureau of Standards, US. Department of Commerce (Jan 1977)

    Google Scholar 

  9. Pinch, R.: private communication (1998)

    Google Scholar 

  10. Pohlig, S.C., Hellman, M.E.: An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance. In: IEEE Transactions on Information Theory, Vol. IT-24 (1978) 106–110

    Article  MathSciNet  Google Scholar 

  11. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. In: Communications of the ACM, 21(2) (Feb 1978) 120–126

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Colin Boyd Ed Dawson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, M., Hughes, E. (1998). Protocol failures related to order of encryption and signature computation of discrete logarithms in RSA groups. In: Boyd, C., Dawson, E. (eds) Information Security and Privacy. ACISP 1998. Lecture Notes in Computer Science, vol 1438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0053737

Download citation

  • DOI: https://doi.org/10.1007/BFb0053737

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64732-4

  • Online ISBN: 978-3-540-69101-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics