Dynamic clustering in object databases exploiting effective use of relationships between objects

  • Frédérique Bullat
  • Michel Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1098)


This paper concerns the problem of clustering objects onto units of secondary storage to minimise the number of I/O operations in database applications. We first investigate problems associated with most existing clustering schemes. We then propose STD, a Statistic-based Tunable and Dynamic clustering strategy which is able to overcome deficiencies of existing solutions. Our main contributions concern the dynamicity of the solution without adding high overhead and excessive volume of statistics. Reorganisations are performed only when the corresponding overhead is strictly justified. Clustering specifications are built from observation upon objects life, capturing any type of logical or structural inter-object links. Moreover, our clustering mechanism does not need any user or administrators hints, but remains user-controlled. A partial validation of STD has been made using Texas.


Clustering Buffering Object-Oriented DataBase System Performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Benzaken, C. Delobel, “Enhancing performance in a persistent object store: clustering strategies in O 2”, 4th International Workshop on Persistent Object Systems, September 1990, pp. 403–412.Google Scholar
  2. 2.
    V. Benzaken, “An evaluation model for clustering strategies in the O 2 Object-Oriented Database System”, Third International Conference on Database Theory, December 1990, pp. 126–140.Google Scholar
  3. 3.
    F. Bullat, “Regroupement physique d'objets dans les bases de données”, to appear in the I.S.I. Journal, ‘Ingénierie des Systèmes d'Information', Vol. 2, no. 4, September 1995.Google Scholar
  4. 4.
    R.G.G. Catell, “An Engineering Database Benchmark”, in “The Benchmark Handbook for Database and Transaction Processing Systems”, Morgan Kaufman Publishers, 1991, pp. 247–281.Google Scholar
  5. 5.
    E.E. Chang, “Effective Clustering and Buffering in an Object-Oriented DBMS”, Ph.D. Dissertation in Computer Science, Report no. UCB/CSD 89/515, University of California, Berkely, June 1989.Google Scholar
  6. 6.
    E.E. Chang, R.H. Katz, “Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-Oriented DBMS”, ACM SIGMOD Conference, New York, 1989, pp. 348–357.Google Scholar
  7. 7.
    E.E. Chang, R.H. Katz, “Inheritance in Computer-Aided Design Databases: Semantics and Implementation Issues”, CAD, Vol. 22, no. 8, October 1990, pp. 489–499.Google Scholar
  8. 8.
    J.B. Cheng, A.R. Hurson, “Effective Clustering of Complex Objects in Object-Oriented Databases”, ACM SIGMOD Conference, New York, 1991, pp. 22–31.Google Scholar
  9. 9.
    J.B. Cheng, A.R. Hurson, “On the Performance Issues of Object-Based Buffering”, ACM SIGMOD Conference, New York, 1991, pp. 22–31.Google Scholar
  10. 10.
    W. Effelsberg, T. Haerder, “Principles of Database Buffer Management”, ACM Transactions on Database Systems, Vol. 9, no. 4, December 1984, pp. 560–595.CrossRefGoogle Scholar
  11. 11.
    O. Gruber, L.Amsaleg, “Object grouping in EOS”, Workshop on Distributed Object Management, University of Alberta, August 1992, pp. 117–131.Google Scholar
  12. 12.
    M. Hornick, S. Zdonick, “A shared Segmented Memory System for an Object-Oriented Database”, ACM Transactions on Office Information Systems, Vol. 5, no. 1, January 1987, pp. 70–95.CrossRefGoogle Scholar
  13. 13.
    S.E. Hudson, R. King, “Cactis: A Self-Adaptive, Concurrent Implementation of an Object-Oriented Database Management System”, ACM Transactions on Database Systems, Vol. 14, no. 3, September 1989, pp. 291–321.CrossRefGoogle Scholar
  14. 14.
    W. Kim, J. Banerjee, H-T. Chou, J. F. Garza and D. Woelk, “Composite Object Support in an Object-Oriented Database System”, International Conference on OOPSLA, Orlando (Florida), October 4–8 1987, In proceedings of ACM SIGMOD Conference, 1987, pp. 118–125.Google Scholar
  15. 15.
    C. Lamb, G. Landis, J. Orenstein and D. Weinreb “The ObjectStore Database System”, Communications of the ACM, Vol. 34, no. 10, October 1991, pp. 50–63.CrossRefGoogle Scholar
  16. 16.
    ONTOLOGIC Cie, “ONTOS Client Library Reference Manual”, December 1990.Google Scholar
  17. 17.
    Servio Corporation, “GemStone V. 3.2 Reference Manual”, 1992.Google Scholar
  18. 18.
    V. Singhal, S.V. Kakkad, P.R. Wilson, “Texas: An Efficient, Portable Persistent Store”, 5th International Workshop on Persistent Object Systems, San Miniato, Italy, September 1992.Google Scholar
  19. 19.
    J.W. Stamos, “Static Grouping of small objects to Enhance Performance of a Paged Virtual Memory”, ACM Transactions on Computer Systems, Vol. 2, no. 2, May 1984, pp. 155–180.CrossRefGoogle Scholar
  20. 20.
    E.M. Tsangaris, J.F. Naughton, “A Stochastic Approach for Clustering in Object Bases”, ACM SIGMOD Conference, Denver, May 1991, pp. 12–21.Google Scholar
  21. 21.
    E.M. Tsangaris, “Principles of Static Clustering for Object-oriented Databases”, Technical Report no. 1104, University of Wisconsin-Madison, August 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Frédérique Bullat
    • 1
  • Michel Schneider
    • 1
  1. 1.Laboratoire d'InformatiqueUniversité Blaise Pascal Clermont-Ferrand IIAubière CédexFrance

Personalised recommendations