Skip to main content

Synthesis and application of water-soluble macromolecular derivatives of the redox coenzymes NAD(H), NADP(H) and FAD

  • Conference paper
  • First Online:
Vertebrate Cell Culture II and Enzyme Technology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 39/1))

Abstract

During the past 15 years, the development of strategies to apply the catalytic potential of redox coenzyme-requiring enzymes has been a subject of intensive study. The main purpose of which has been to cut the cost of coenzyme to an economically acceptable level. One approach has been the utilization of isolated coenzyme-dependent enzyme systems with simultaneous enzymatic coenzyme regeneration (recycling). This has been used in conjugation with ultrafiltration reactor technology (enzyme membrane reactor), with coenzyme concentration being kept at a catalytic level. The concept implies confinement (immobilization) and practically 100% retention of both enzymes and coenzymes being dissolved in homogeneous solution within the reactor space that is closed off by an ultrafiltration membrane through which low-molecular-weight reactants (substrates and products) can freely pass. Since the problem of retaining nearly 100% native coenzymes of relatively low molecular weight by ultrafiltration membranes has not been satisfactorily solved, active macromolecular coenzyme derivatives are required. In this review, the syntheses, properties and merits of water-soluble macromolecular derivatives of NAD(H), NADP(H) and FAD are considered with respect to their biotechnological application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klibanov AM (1983) Technology Review 86: 50

    Google Scholar 

  2. Godtfredsen SE, Ingvorsen K, Yde B, Andresen O (1985) The scope of biocatalysts in organic chemical processing, in: Studies in organic chemistry 22, Biocatalysts in organic syntheses; Tramper J, van der Plas HC, Linko P (eds) Amsterdam, Elsevier, p 3

    Google Scholar 

  3. Sugiura Y, Kuwahara J, Nagasawa T, Yamada H (1987) J. Am. Chem. Soc. 109: 5848

    CAS  Google Scholar 

  4. Linko YY, Linko P (1985) Immobilized biocatalysts in organic synthesis and chemical production, in: see Ref. 2, p 159

    Google Scholar 

  5. Laane C, Tramper J, Lilly MD (eds) (1987) Studies in organic chemistry 29, Biocatalysis in organic media, Amsterdam, Elsevier

    Google Scholar 

  6. Chenault HK, Whitesides GM (1987) Appl. Biochem. Biotech. 14: 147

    CAS  Google Scholar 

  7. Whitesides GM, Wong CH (1985) Angew. Chem. 97: 617

    CAS  Google Scholar 

  8. Matos JR, Smith MB, Wong CH (1985) Bioorg. Chem 13: 121

    CAS  Google Scholar 

  9. Jones JB (1986) Tetrahedron 42: 3351

    CAS  Google Scholar 

  10. Keinan E, Hafeli EK, Seth KK, Lamed R (1986) J. Am. Chem. Soc. 108: 162

    CAS  Google Scholar 

  11. Lee LG, Whitesides GM (1986) J. Org. Chem. 51: 25

    CAS  Google Scholar 

  12. Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem. 97: 541

    CAS  Google Scholar 

  13. Wichmann R, Wandrey C, Bückmann AF, Kula MR (1981) Biotech. Bioeng. 23: 2789

    CAS  Google Scholar 

  14. Wandrey C, Bossow B (1985) Continuous Cofactor Regeneration, in: Proc. 3rd Int. Conf. Chemistry and Biotechnology of Biologically Active Natural Products, Sept. 16–21, 1985, Sofia (Bulgaria) Bulgarian Acad. Sci. 1: 195

    Google Scholar 

  15. Ohshima T, Wandrey C, Kula MR, Soda K (1985) Biotech. Bioeng. 27: 1616

    CAS  Google Scholar 

  16. Hummel W, Schütte H, Schmidt E, Wandrey C, Kula MR (1987) Appl. Microbiol. Biotechnol. 26:409

    CAS  Google Scholar 

  17. Asano Y, Nakazawa A (1987) Agric. Biol. Chem. 51: 2035

    CAS  Google Scholar 

  18. Asano Y, Endo K, Nakazawa A, Hibino Y, Okazaki N, Ohmori M, Numao N, Kondo K (1987) Agric. Biol. Chem. 51: 2621

    CAS  Google Scholar 

  19. Hummel W, Schütte H, Kula MR (1984) Enzyme Engineering 7; Ann. N. Y. Acad. Sci. 434: 87

    Google Scholar 

  20. Riva S, Bovara R, Pasta P, Carrea G (1986) J. Org. Chem. 51: 2902

    CAS  Google Scholar 

  21. Crans DC, Kazlauskas RJ, Hirschbein BL, Wong CH, Abril O, Whitesides GM (1987) Methods in Enzymology, 136: 263

    PubMed  CAS  Google Scholar 

  22. May SW, Padgette SR (1983) Bio/Technology, 5: 677

    Google Scholar 

  23. Alberti BN, Klibanov AM (1982) Enzyme Microb. Technol. 4: 47

    CAS  Google Scholar 

  24. Szwajcer E, Brodelius P, Mosbach K (1982) Enzyme. Microb. Technol. 4: 409

    CAS  Google Scholar 

  25. Aretz W, Sauber K (1984) L-Amino Acid Oxidase, in: Proc. 3rd Europ. Conf. Biotechnology, September 10–14, 1984, München (FRG), Vol. I, Rehm HJ, Behrens D (eds) Weinheim, Verlag Chemie, p 445

    Google Scholar 

  26. Tu SC, Edelstein SJ, McCormick DB (1973) Arch. Biochem. Biophys. 159: 880

    Google Scholar 

  27. Murata K, Tani K, Kato J, Chibata I (1979) J. Appl. Biochem. 1: 282

    Google Scholar 

  28. Dennda G, Kula MR (1986) Biotechnol. 4: 143

    CAS  Google Scholar 

  29. Wang SS, King CK (1979) Adv. Biochem. Eng. 12: 119

    CAS  Google Scholar 

  30. Lee LG, Whitesides GM (1985) J. Am. Chem. Soc. 107: 6999

    CAS  Google Scholar 

  31. Knowles C (1983) Patent Application PCT/GB83/00175

    Google Scholar 

  32. Ilan E, Chang TMS (1986) Appl. Biochem. Biotech. 13: 221

    CAS  Google Scholar 

  33. Kitpreechavanich V, Nishio N, Hayashi M, Nagai S (1985) Biotech. Lett. 7: 657

    CAS  Google Scholar 

  34. Kulbe KD, Chmiel H (1988) Enzyme Engineering 9; Ann. N.Y. Acad. Sci. 542: 444

    CAS  Google Scholar 

  35. Mosbach K (1978) Adv Enzymology, 46: 205

    CAS  Google Scholar 

  36. Katayama N, Hayakawa K, Urabe I, Okada H (1984) Enzyme Microb. Technol. 6: 538

    CAS  Google Scholar 

  37. Everse J, Zoll EL, Kahan L, Kaplan NO (1971) Bioorg. Chem. 1: 207

    Google Scholar 

  38. Chambers RP, Walle EM, Baricos WH, Cohen W (1978) Enzyme Engineering, 3: 363

    Google Scholar 

  39. Schütte H, Hummel W, Kula MR (1982) Biochem. Biophys. Acta 716: 298

    PubMed  Google Scholar 

  40. Wong CH, Whitesides GM (1981) J. Am. Chem. Soc. 103: 4890

    CAS  Google Scholar 

  41. Wong CH, Drueckhammer DG, Sweers HM (1985) J. Am. Chem. Soc. 107: 4028

    CAS  Google Scholar 

  42. Bückmann AF (1987) Progress Report 1987, Biotechnology Action Programme of the EEC, 2:255

    Google Scholar 

  43. Kazlauskas RJ, Whitesides GM (1985) J. Org. Chem. 50: 1069

    CAS  Google Scholar 

  44. Wong CH, McCurry SD, Whitesides GM (1980) J. Am. Chem. Soc. 102: 7983

    Google Scholar 

  45. Wandrey C, Wichmann R, Leuchtenberger W, Kula MR, Bückmann AF (1982) US Patent 4.304.858

    Google Scholar 

  46. Wandrey C, Wichmann R, Leuchtenberger W, Kula MR, Bückmann AF (1982) US Patent 4.326.031

    Google Scholar 

  47. Kroner KH, Schütte H, Stach W, Kula MR (1982) J. Chem. Tech. Biotechnol. 32: 130

    CAS  Google Scholar 

  48. Cordes A, Kula MR (1986) J. Chromatogr. 376: 375

    CAS  Google Scholar 

  49. Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) J. Biol. Chem. 258: 1826

    PubMed  CAS  Google Scholar 

  50. Rella R, Raia CA, Pisani FM, Trincone A, Vaccaro C, Nucci R, Gambacorta A, De Rosa M, Rossi M (1987) Specifity and Stability in Organic Solvents of a Novel Archaebacterial NAD-Dependent Alcohol Dehydrogenase, in: Proc. 4th Europ Congr on Biotechn, June 14–19, 1987, Amsterdam (NL), Vol. 2, Neijssel OM, van der Meer RR, Luyben KChAM (eds) Amsterdam, Elsevier, p 336

    Google Scholar 

  51. Rossmann MG, Moras D, Olsen KW (1974) Nature 250: 194

    PubMed  CAS  Google Scholar 

  52. Wierenga RK, Drenth J, Schulz GE (1983) J. Mol. Biol. 167: 725

    PubMed  CAS  Google Scholar 

  53. Mansson MO, Mosbach K (1987) in: Coenzymes and Cofactors, Dolphin D, Paulson R, Avramovic O (eds) 2B: 217, Wiley, New York

    Google Scholar 

  54. Okada H, Urabe I (1987) Methods in Enzymology 136: 34

    PubMed  CAS  Google Scholar 

  55. Sogin DC (1976) J. Neurochem. 27: 1333

    PubMed  CAS  Google Scholar 

  56. Jones JB, Taylor KE (1976) Can. J. Chem. 54: 2969

    CAS  Google Scholar 

  57. Lindberg M, Larsson PO, Mosbach K (1973) Eur. J. Biochem. 40: 187

    PubMed  CAS  Google Scholar 

  58. Lowe CR, Mosbach K (1974) Eur. J. Biochem. 49: 511

    PubMed  CAS  Google Scholar 

  59. Muramatsu M, Urabe I, Yamada Y, Okuda H (1977) Eur. J. Biochem. 80: 111

    PubMed  CAS  Google Scholar 

  60. Okuda K, Urabe I, Okada H (1985) Eur. J. Biochem. 151: 33

    PubMed  CAS  Google Scholar 

  61. Zappelli P, Rossodivita A, Re L (1975) Eur. J. Biochem. 54: 475

    PubMed  CAS  Google Scholar 

  62. Zappelli P, Pappa R, Rossodivita A, Re L (1977) Eur. J. Biochem. 72: 309

    PubMed  CAS  Google Scholar 

  63. Zappelli P, Pappa R, Rossodivita A, Re L (1978) Eur. J. Biochem. 89: 491

    PubMed  CAS  Google Scholar 

  64. Schmidt HL, Grenner G (1976) Eur. J. Biochem. 67: 295

    PubMed  CAS  Google Scholar 

  65. Weibel MK, Fuller CW, Stadel JM, Bückmann, AF, Doyle T, Bright HJ (1974) Enzyme Engineering 2: 203

    Google Scholar 

  66. Bückmann AF (1979) German Patent DP 28.41.414

    Google Scholar 

  67. Sakamoto H, Nukamura A, Urabe I, Yamada Y, Okada H (1986) J. Ferment. Technol. 64: 511

    CAS  Google Scholar 

  68. Bückmann AF (1988) Heterocycles 27: 1623

    Google Scholar 

  69. Imahori K, Tomita K (1980) German Patent DP 2945129.4

    Google Scholar 

  70. Wykes JR, Dunnill P, Lilly MD (1972) Biochim. Biophys. Acta 286: 260

    PubMed  CAS  Google Scholar 

  71. Lee CY, Kaplan NO (1975) Arch. Biochem. Biophys. 168: 665

    CAS  Google Scholar 

  72. Zappelli P, Rossodivita A, Prosperi G, Pappa R, Re L (1976) Eur. J. Biochem. 62: 211

    PubMed  CAS  Google Scholar 

  73. Zappelli P, Pappa R, Rossodivita A, Re L (1977) Eur. J. Biochem. 72: 309

    PubMed  CAS  Google Scholar 

  74. Okuda K, Urabe I, Okada H (1985) Eur. J. Biochem. 147: 249

    PubMed  CAS  Google Scholar 

  75. Riva S, Carrea G, Veronese FM, Bückmann AF (1986) Enzyme Microb. Technol. 9: 556

    Google Scholar 

  76. Bückmann AF (1987) Europ Patent Appl 0 247 537.A2

    Google Scholar 

  77. Bückmann AF, Wray V, van der Plas HC (1987) Two Unexpected Transformations of N(1)-(2-Aminoethyl)-Adenine Derivatives of NAD, NADP and FAD under Mild Aqueous Conditions, in: Proc. 11th Intl. Conf. Heterocyclic Chemistry, August 16–21, 1987, Heidelberg (FRG) Neidlein R (ed) Frankfurt, GDCh, p 398

    Google Scholar 

  78. Davies P, Mosbach K (1974) Biochim. Biophys. Acta 370: 329

    PubMed  CAS  Google Scholar 

  79. Malinauskas AA, Kulys JJ (1978) Biotech. Bioeng. 20: 769

    CAS  Google Scholar 

  80. Sakaguchi Y, Murachi T (1980) J. Appl. Biochem. 2: 117

    CAS  Google Scholar 

  81. Bückmann AF, Kula MR, Wichmann R, Wandrey C (1981) J. Appl. Biochem. 3: 301

    Google Scholar 

  82. Katayama N, Urabe I, Okada H (1983) Eur. J. Biochem. 132: 403

    PubMed  CAS  Google Scholar 

  83. Hayakawa K, Urabe I, Okada H (1985) J. Ferment. Technol. 63: 245

    CAS  Google Scholar 

  84. Yamazaki Y, Maeda H, Suzuki H (1976) Biotech. Bioeng. 18: 1761

    CAS  Google Scholar 

  85. Yoshikawa M, Goto M, Ikura K, Sasaki R, Chiba H (1983) Agric. Biol. Chem. 46: 207

    Google Scholar 

  86. Bückmann AF, Morr M, Johansson G (1981) Makromol. Chem. 82: 1379

    Google Scholar 

  87. Yamazaki Y, Maeda H (1981) Agric. Biol. Chem. 45: 2277

    CAS  Google Scholar 

  88. Le Goffic F, Sicsic S, Vincent C (1980) Eur. J. Biochem. 108: 143

    PubMed  Google Scholar 

  89. Fuller CW, Rubin JR, Bright HJ (1980) Eur. J. Biochem. 103: 421

    PubMed  CAS  Google Scholar 

  90. Bückmann AF, Morr M, Kula MR (1987) Biotechnol. Appl. Biochem. 9: 258

    Google Scholar 

  91. Albertsson PA (1985) Partition of cell particles and macromolecules, 3rd ed., Wiley Interscience, New York

    Google Scholar 

  92. Mansson MO, Larsson PO, Mosbach K (1987) Eur. J. Biochem. 86: 455

    Google Scholar 

  93. Mansson MO, Larsson PO, Mosbach K (1979) FEBS Lett. 98: 309

    PubMed  CAS  Google Scholar 

  94. Gacesa P, Venn RF (1979) Biochem. J. 177: 369

    PubMed  CAS  Google Scholar 

  95. Kovar J, Simek K, Kucera I, Matyska L (1984) Eur. J. Biochem. 139: 585

    PubMed  CAS  Google Scholar 

  96. SchÄfer HG, Jacobi T, Eichhorn H, Woenckhaus C (1986) Biol. Chem. Hoppe-Seyler 367: 969

    PubMed  Google Scholar 

  97. Eguchi, T, Iizuka T, Kagotani T, Lee JH, Urabe I, Okada H (1986) Eur. J. Biochem. 155: 415

    PubMed  CAS  Google Scholar 

  98. Nakamura A, Urabe I, Okada H (1986) J. Biol. Chem. 261: 16792

    PubMed  CAS  Google Scholar 

  99. Kato N, Yamagami T, Shimao M, Sakazawa C (1987) Appl, Microb. Biotechnol. 25: 415

    CAS  Google Scholar 

  100. Goulas P (1987) Eur. J. Biochem. 168: 469

    PubMed  CAS  Google Scholar 

  101. Woenckhaus C, Koob R, Burkhard A, SchÄfer HG (1983) Bioorg. Chem. 12: 45

    CAS  Google Scholar 

  102. Jacobi T, Woenckhaus C (1987) Binary enzyme reactors with modified dehydrogenase, in: Proc. 4th Europ Congr Biotechn, Vol. 1 Neijssel OM, van der Meer RR, Luyben KChAM (eds) Elsevier, Amsterdam, p 72

    Google Scholar 

  103. Wandrey C, Wichmann R (1985) Coenzyme regeneration in membrane reactors, in: Application of isolated enzymes and immobilized cells to biotechnology Laskin A (ed) Addison Wesley, p 177

    Google Scholar 

  104. Adachi S, Ogata M, Tobita H, Hashimoto K (1984) Enzyme Microbiol. Technol. 6: 259

    CAS  Google Scholar 

  105. Grenner G, Schmidt HL, Völkl W (1976) Hoppe-Seyler’s Z. Physiol. Chem. 357: 887

    PubMed  CAS  Google Scholar 

  106. BrÄnden CJ, Jornvall H, Eklund H, Furugren B (1975) Alcohol dehydrogenase, in: The Enzymes, Vol. 11, Boyer PD (ed) New York, Academic Press p 103

    Google Scholar 

  107. Holbrook JJ, Liljas A, Steindl SJ, Rossmann, MG (1975) Lactate dehydrogenase, in: The Enzymes, Vol. 11, Boyer PD (ed), New York, Academic Press p 191

    Google Scholar 

  108. Yamazaki Y, Maeda H, Satoh A, Hiromi K (1984) J. Biochem. 95: 109

    PubMed  CAS  Google Scholar 

  109. Schmidt HL, Dolabdjian B (1980) Methods in Enzymology 66: 176

    PubMed  CAS  Google Scholar 

  110. Furukawa D, Urabe I, Okada H (1981) Eur. J. Biochem. 114: 101

    PubMed  CAS  Google Scholar 

  111. Furukawa S, Katayama N, Iizuka T, Urabe I, Okada H (1980) FEBS Lett. 121: 239

    CAS  Google Scholar 

  112. Hummel W, Schütte H, Kula MR (1984) Enzyme Engineering 7; Ann. N. Y. Acad. Sci. 434: 194

    CAS  Google Scholar 

  113. Jones JB (1985) An illustrative example of a synthetically useful enzyme: Horse liver alcohol dehydrogenase, in: Enzymes in organic synthesis, Ciba Foundation Symposium 111, Porter R, Clark S (eds) London, Pitman, p 3

    Google Scholar 

  114. Whitesides GM (1985) Applications of cell-Free enzymes in organic synthesis, in: Enzymes in organic synthesis, Ciba Foundation Symposium 111, Porter R, Clark S (eds) London, Pitman, p 76

    Google Scholar 

  115. Carrea G, Bovara R, Longhi R, Riva S (1985) Enzyme Microb. Technol. 7: 597

    CAS  Google Scholar 

  116. Kajiwara S, Maeda H (1985) Biotech. Bioeng. 18: 1794

    Google Scholar 

  117. Yamazaki Y, Maeda H (1982) Agric. Biol. Chem. 46: 1571

    CAS  Google Scholar 

  118. Chang TMS (1987) Methods in Enzymology 16: 67

    Google Scholar 

  119. Flaschel E, Wandrey C, Kula MR (1983) Adv. Biochem. Eng/Biotechnol. 26: 73

    CAS  Google Scholar 

  120. Fiolitakis E, Wandrey C (1982) Reaction technology of the enzymatically catalysed production of l-alanine, in: Proc. 3rd Rotenburg Fermentation Symposium, Lafferty RM (ed) p 273

    Google Scholar 

  121. Leuchtenberger W, Wandrey C, Kula MR (1986) German Patent, 33.07.094.6

    Google Scholar 

  122. Tichy S, Vasic-Racki D, Schütte H, Talsky G, Wandrey C (1987) Chem. Biochem. Eng. 1: 25

    CAS  Google Scholar 

  123. Schmidt E, Vasic-Racki D, Wandrey C (1987) Appl. Microbiol. Biotechnol. 26: 42

    CAS  Google Scholar 

  124. Marconi W, Prosperi G, Giovenco S, Morisi F (1975) J. Mol. Catal. 1: 111

    Google Scholar 

  125. Grunwald J, Chang TMS (1979) J. Appl. Biochem. 1: 104

    CAS  Google Scholar 

  126. Grunwald J, Chang TMS (1981) J. Mol. Catal. 11: 83

    CAS  Google Scholar 

  127. Sakaguchi Y, Sukahara M, Endo J, Murachi T (1981) J. Appl. Biochem. 3: 32

    CAS  Google Scholar 

  128. Schütte H, Hummel W, Kula M-R (1984) Appl. Microbiol. Biotechnol. 19: 167

    Google Scholar 

  129. Hummel W, Schütte H, Kula MR (1985) Appl. Microbiol. Biotechnol. 21: 7

    CAS  Google Scholar 

  130. Hummel W, Schütte H, Kula MR, Leuchtenberger W (1985) German Pat Appl P 35.36.662.1

    Google Scholar 

  131. Schütte H, Hummel W, Tsai H, Kula MR (1985) Appl. Microbiol. Biotechnol. 22: 306

    Google Scholar 

  132. Campagna R, Bückmann AF (1987) Appl. Microbiol. Biotechnol. 26: 417

    CAS  Google Scholar 

  133. Schütte H, Hummel W, Kula MR, Leuchtenberger W (1985) German Patent P 32.34.022.2

    Google Scholar 

  134. Schmidt E, Wichmann R, Kula MR, Wandrey C (1987) Production of l-amino acids from their corresponding α-ketoacids, in: Proc. of the Sectorial Meeting of Contractors, CEC Biotechnology Action Programme (BAP), Enzyme Engineering: Protein design and application in biocatalysis, Capri (Italy) Rossi M (ed) Brussels, CEC, p 131

    Google Scholar 

  135. Furukawa S, Sugimoto Y, Urabe I, Okada H (1980) Biochimie 62: 629

    PubMed  CAS  Google Scholar 

  136. Kula MR, Kroner KH, Hustedt H (1982) Adv. Biochem. Eng. 24: 73

    CAS  Google Scholar 

  137. Bückmann AF (1987) Biocatalysis 1: 173

    Google Scholar 

  138. Info 87-9 (1987) Merck-Schuchardt, Germany (FRG)

    Google Scholar 

  139. Lotter H, Drauz KH, Kleemann A, Leuchtenberger W, Wandrey C, Kula MR (1987) Herstellung und Anwendung von l-tert-Leucin, Poster presented at the 21th GDCh Hauptversammlung, 13–18 Sept, 1987, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Bückmann, A.F., Carrea, G. (1989). Synthesis and application of water-soluble macromolecular derivatives of the redox coenzymes NAD(H), NADP(H) and FAD. In: Vertebrate Cell Culture II and Enzyme Technology. Advances in Biochemical Engineering/Biotechnology, vol 39/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0051953

Download citation

  • DOI: https://doi.org/10.1007/BFb0051953

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51026-0

  • Online ISBN: 978-3-540-46133-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics