Advertisement

Chemical treatment of isotopes produced in a nuclear reactor

  • G. B. Cook
  • H. Seligman
Conference paper
Part of the Fortschritte der Chemischen Forschung book series (TOPCURRCHEM, volume 3/3)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Arrol, W. J.: Apparatus for Large Scale Production of Phosphorus 32. Nucleonics 11, (5) 26 (1953).Google Scholar
  2. 2.
    -, K. F. Chackett and S. Epstein: Extraction and Purification of Xenon and Krypton Isotopes from Neutron Irradiated Uranium. Canad. J. Res. B 27, 757 (1949).Google Scholar
  3. 3.
    -, E. J. Wilson, C. Evans, J. Chadwick and J. Eakins: The Preparation and Possible Industrial Uses of Krypton 85 and Tritium. 2nd Oxford Radioisotope Conference 1954, Vol. II. London: Butterworth 1954.Google Scholar
  4. 4.
    Axelrod, J., and E. H. Swift: The Extraction of Ferric Iron from Hydrochloric Acid Solutions Using Dichloroethyl Ether and the Formula of the Iron Compound in the Ether. J. Amer. chem. Soc. 62, 33 (1940).Google Scholar
  5. 5.
    Ballentine, D. S., and W. E. Cohn: The Preparation of Carrier-free 131I. U. S. Atomic Energy Commiss. Doc., MDDC. 1600 (June 1947).Google Scholar
  6. 6.
    Barton, G. W., A. Ghiorso and I. Perlman: Radioactivity of Astatine Isotopes. Physic. Rev. 82, 13 (1951).Google Scholar
  7. 7.
    Bock, R., u. E. Bock: Die Darstellung reiner Thorium-und Cer-Verbindungen durch Ausschütteln wäßriger Nitratlösung mit organischen Lösungsmitteln. Z. anorg. allg. Chem. 263, 146 (1950).Google Scholar
  8. 8.
    Born, H. J., u. U. Drehmann: Über die Gewinnung von radioaktivem Kupfer in gewichtsloser Form. Naturwiss. 32, 159 (1945).Google Scholar
  9. 9.
    Boyd, G. E., J. W. Cobble and S. Wexler: Recoil Reactions with High Intensity Slow Neutron Sources. I. The Szilard-Chalmers Enrichment of 35.9 h. 82Br. J. Amer. chem. Soc. 74, 237 (1952).Google Scholar
  10. 10.
    Broido, A.: Applications of Thenoyl Trifluoroacetone (TTA), Extraction to Purification of Scandium and Preparation of 45Ca. U.S. Atomic Energy Commiss. Rep., AECD. 2616 (July 29th, 1947).Google Scholar
  11. 11.
    Collie, C. H.: The Decay Constant of Uranium II. Proc. Roy. Soc. [London] A 131, 541 (1931).Google Scholar
  12. 12.
    Connick, R. E., and W. H. McVey: The Aqueous Chemistry of Zirconium. J. Amer. chem. Soc. 71, 3182 (1949).Google Scholar
  13. 13.
    Crowley, J. F., J. G. Hamilton and K. G. Scott: Metabolism of Carrier-free Radioberyllium in the Rat. J. biol. Chemistry 177, 975 (1949).Google Scholar
  14. 14.
    Cunningham, J. G., R. Mercer, M. Sizeland, J. Eakin and H. H. Willis: Rapid Separation of Rare-Earth Fission Products by Cation-Exchange, Using Lactic Acid Eluant. J. inorg. and nuclear Chem. 1, 163 (1955).Google Scholar
  15. 15.
    Dodson, R. W., G. J. Formey and E. H. Swift: The Extraction of Ferric Chloride from Hydrochloric Acid Solutions by Isopropyl Ether. J. Amer. chem. Soc. 58, 2573 (1936).Google Scholar
  16. 16.
    Drehmann, U.: Über die Abtrennung und Anreicherung des künstlichen radioaktiven Natriumisotops 1124Na. Naturwiss. 33, 24 (1946).Google Scholar
  17. 17.
    Duval, J. F., and M. H. Kurbatov: Separation of Carrier-free Scandium from a Calcium Target. J. Amer. chem. Soc. 75, 2246 (1953).Google Scholar
  18. 18.
    Elson, R., S. W. Mason, D. F. Peppard, P. A. Sellars and M. H. Studier: Isolation of Protoactinium from a New Source. J. Amer. chem. Soc. 73, 4974 (1951).Google Scholar
  19. 19.
    Evans, C. C., and J. Stevenson: Production of Radioactive Iodine. Brit. Pat. Specific. 27780/54 (1954).Google Scholar
  20. 20.
    Evans, C. C., and J. Stevenson: Production of Radioactive Phosphorus. Brit. Pat. Specific. 27760/54 (1954).Google Scholar
  21. 21.
    Finkle, B., and W. E. Cohn: Preparation of Carrier-free Iodine 131Cs 10-day Tracer. U.S. Nat. Nuclear Energy Ser. Div. IV, Vol. 9B, Paper 287. New York: McGraw-Hill 1951.Google Scholar
  22. 22.
    Freiling, E. C., and R. J. Bunney: Ion Exchange as a Separation Method. VII. Near Optimum Conditions for the Separation of Fission Product Rare-Earths with Lactic Acid Eluant at 87°C. J. Amer. Chem. Soc. 76, 1021 (1954).Google Scholar
  23. 23.
    Garrison, W. M., and J. G. Hamilton: The Production and Isolation of Carrier-free Radioisotopes. Chem. Rev. 49, 237 (1951).Google Scholar
  24. 24.
    Gale, J. D., W. M. Garrison and J. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. IX. Preparation and Isolation of Re183,184 from Tantalum. J. chem. Physics 18, 995 (1950).Google Scholar
  25. 25.
    —: Carrier-free Radioisotopes from Cyclotron Targets. XI. Preparation and Isolation of 185Os and 183,184Re from Tungsten. J. chem. Physics 18, 1419 (1950).Google Scholar
  26. 26.
    —: Carrier-free Radioisotopes from Cyclotron Targets. XIV. Preparation and Isolation of Bi204,206 from Lead. J. chem. Physics 19, 256 (1951).Google Scholar
  27. 27.
    —: Carrier-free Radioisotopes from Cyclotron Targets. XVIII. Preparation and Isolation of Cr51 from Vanadium. J. chem. Physics 19, 1217 (1951).Google Scholar
  28. 28.
    -, H. R. Haymond, W. M. Garrison and J. G. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. XVI. Preparation and Isolation of Pd103 from Rhodium. J. chem. Physics 19, 660 (1951).Google Scholar
  29. 29.
    Glendenin, L. E.: Preparation of Carrier-free Tellurium by Use of Selenium Carrier. U.S. Nat. Nuclear Energy Ser., Vol. 9B, Paper 275. New York: McGraw-Hill 1951.Google Scholar
  30. 30.
    -, and H. Gest: Preparation of Niobium Tracer by Co-Separation with Manganese Dioxide. U.S. Nat. Nuclear Energy Ser., Vol. 9B, Paper 254. New York: McGraw-Hill 1951.Google Scholar
  31. 31.
    -, and C. M. Nelson: Preparation of Carrier-free Caesium Tracer by Use of Ammonium Carrier. U.S. Nat. Nuclear Energy Ser., Vol. 9B, Paper 285. New York: McGraw-Hill 1951.Google Scholar
  32. 32.
    -, E. P. Steinberg, M. G. Inghram and D. C. Hess: Nuclear Structure in Fission. Physic. Rev. 84, 860 (1951).Google Scholar
  33. 33.
    Godlewski, T.: Some Radioactive Properties of Uranium. Philos. Mag. 10, 45 (1905).Google Scholar
  34. 34.
    Govaerts, J.: Une nouvelle méthode de séparation des radiéléments artificiels. Bull. Soc. roy. Sci. Liège 9, 38 (1940).Google Scholar
  35. 35.
    Graham, D. C., and G. T. Seaborg: The Distribution of Minute Amounts of Material between Liquid Phases. J. Amer. chem. Soc. 60, 2524 (1938).Google Scholar
  36. 36.
    Gray, P. R., and S. G. Thompson: Chemistry Division, University of California, Quart. Rep. (Sept.–Nov. 1952). U. S. Atomic Energy Commiss. Doc. UCRL. 2069 (Dec. 31st, 1952).Google Scholar
  37. 37.
    Grummitt, W. E., and G. Wilkinson: Chemical Separation of Fission Products. Nucleonics 9, (3), 52 (1951).Google Scholar
  38. 38.
    Gueron, J., and L. Yaffe: Formation of Uranium Hydride. Nature 160, 575 (1947).Google Scholar
  39. 39.
    Hahn, O.: Applied Radiochemistry. Ithaca, N. Y.: Cornell Univ. Press 1936.Google Scholar
  40. 40.
    Harbottle, G., and A. G. Maddock: The Preparation of Chromium 51 of High Specific Activity. J. chem. Physics 21, 1696 (1953).Google Scholar
  41. 41.
    Haymond, H. R., and R. D. Maxwell, W. M. Garrison and J. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. VIII. Preparation and Isolation of 64,67Cu from Zinc. J. chem. Physics 18, 901 (1950).Google Scholar
  42. 42.
    -, J. Z. Bowers, W. M. Garrison and J. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. X. Preparation and Isolation of 27Mg from Aluminium. J. chem. Physics 18, 1119 (1950).Google Scholar
  43. 43.
    -, W. M. Garrison and J. G. Hamilton: quoted in ref. (23)..Google Scholar
  44. 44.
    —: Carrier-free Radioisotopes from Cyclotron Targets. XII. Preparation and Isolation of Be7 from Lithium. J. chem. Physics 18, 1685 (1950).Google Scholar
  45. 45.
    -, K. H. Larson, R. D. Maxwell, W. M. Garrison and J. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. VI. Preparation and isolation of 105,106,111Ag from Palladium. J. chem. Physics 18, 391 (1950).Google Scholar
  46. 46.
    -, R. D. Maxwell, W. M. Garrison and J. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. VII. Preparation and Isolation of 48V from Titanium. J. chem. Physics 18, 756 (1950).Google Scholar
  47. 47.
    Hicks, H. G., R. S. Gilbert, P. C. Stevenson and W. H. Hutchin: The Qualitative Anionic Behaviour of a Number of Metals with an Anion Exchange Resin. U.S. Atomic Energy Commiss., Doc. LRL. 65 (Dec. 1953).Google Scholar
  48. 48.
    Huffman, F. H., and R. L. Oswalt: A Rare-Earth Separation by Anion Exchange. J. Amer. chem. Soc. 72, 3323 (1950).Google Scholar
  49. 49.
    Hyde, E., M. H. Studier, H. H. Hopkins jr. and A. Ghiorso: A New Isotope of Protoactinium, Pa229. U.S. Nat. Nuclear Energy Ser., Vol. 14B. The Transuranium Elements. Paper 19.17. New York: McGraw-Hill 1949.Google Scholar
  50. 50.
    Inghram, M., R. J. Hayden and D. C. Hess: 235U Fission Yields in the Rare-Earths Region. Physic. Rev. 79, 271 (1950). *** DIRECT SUPPORT *** A0384010 00002Google Scholar
  51. 51.
    Irvine jr., J. W., and E. T. Clarke: Cyclotron Targets, Preparation and Radiochemical Separation. III. 22Na. J. chem. Physics 16, 686 (1948).Google Scholar
  52. 52.
    James, R. A., and W. P. Bryan: The Use of Thenoyltrifluoroacetone in Ion Exchange Separations. J. Amer. chem. Soc. 76, 1982 (1954).Google Scholar
  53. 53.
    Kahn, H., A. J. Friedman and C. G. Schultz: Distillation of “Carrier-free” Iodine 131 Activity. Nucleonics 12 (7), 72 (1954).Google Scholar
  54. 54.
    Kamen, M. D.: Production and Isotopic Assignment of Longlived Radioactive Sulphur. Physic. Rev. 60, 537 (1941).Google Scholar
  55. 55.
    -: Radioactive Tracers in Biology, p. 231. New York: Academic Press 1947.Google Scholar
  56. 56.
    Karraker, D. G., and D. H. Templeton: Polonium Isotopes Produced with High Energy Particles. Physic. Rev. 81, 510 (1951).Google Scholar
  57. 57.
    Kenny, A. W., W. R. E. Maton and W. T. Spragg: Preparation of Carrier-free Iron 59. Nature 165, 483 (1950).Google Scholar
  58. 58.
    Kenny, A. W., and W. T. Spragg: Preparation of Carrier-free 32P from Pile Irradiated Sulphur. J. chem. soc. [London] 1949, S 326.Google Scholar
  59. 59.
    Kenny, A. W., and W. T. Spragg: The Extraction of Carrier-free 131I from Pile Irradiated Tellurium. J. chem. Soc. [London] 1949, S 323.Google Scholar
  60. 60.
    Khym, J. X., P. C. Tompkins and W. E. Cohn: Ca45 Production from Scandium in the Pile. Radiation Characteristics of Preparation in Carrier-free Form. U. S. Atomic Energy Commiss. Doc., MDDC. 1214 (Aug. 1947).Google Scholar
  61. 61.
    Krause, K. A., and G. E. Moore: Anion Exchange Studies. I. Separation of Zirconium and Niobium in HCl−HF Mixtures. J. Amer. chem. Soc. 73, 9 (1951).Google Scholar
  62. 62.
    —: Anion Exchange Studies. III. Protactinium in Some HCl−HF Mixtures: Separation of Niobium, Tantalum, and Protactinium. J. Amer. chem. Soc. 73, 2900 (1951).Google Scholar
  63. 63.
    —: Anion Exchange Studies. VI. The Divalent Transition Elements Manganese to Zinc in Hydrochloric Acid. J. Amer. chem. Soc. 75, 1460 (1953).Google Scholar
  64. 64.
    -, and F. Nelson: Anion Exchange Studies. X. Ion Exchange on Concentrated Electrolytes. Gold (III) in Hydrochloric Acid Solutions. J. Amer. chem. Soc. 76, 984 (1954).Google Scholar
  65. 65.
    —and G. S. Smith: Anion Exchange Studies. IX. Adsorbability of a Number of Metals in Hydrochloric Acid Solutions. J. physic. and Colloid Chem. 58, 11 (1954).Google Scholar
  66. 66.
    Kurbatov, J. D., and M. H. Kurbatov: Isolation of Radioactive Yttrium and Some of its Properties in Minute Concentrations. J. physic. Chem. 46, 441 (1942).Google Scholar
  67. 67.
    Lanz jr., H., and J. G. Hamilton: Comparative Metabolism and Distribution of Carrier-free Radioarsine (As74). U. S. Atomic Energy Commiss. Doc., MDDC. 1596 (Jan. 1948).Google Scholar
  68. 68.
    Laurent, H., et P. Simonnen: Preparation de 76As par Effet Szilard a partir d'Acide cacodylique. J. Physique Radium 14, 294 (1953).Google Scholar
  69. 69.
    Levy, M., A. S. Keston and S. Udenfield: The Separation of Iodine 131 from Tellurium. J. Amer. chem. Soc. 70, 2289 (1948).Google Scholar
  70. 70.
    Lindner, R.: Über chromatographische Adsorption radioaktiver Atomarten. (Radiometrische Absorptionsanalyse.) Z. physik. Chem. 194, 51 (1944).Google Scholar
  71. 71.
    -: Adsorptionstrennung der Ceriterden, im besonderen ihrer bei der Kernspaltung entstehenden Isotope. Z. Naturforsch. 2a, 329 (1947).Google Scholar
  72. 72.
    Maddock, A. G., and G. L. Miles: The Separation of Protoactinium. J. chem. Soc. [London] 1949, S 253.Google Scholar
  73. 73.
    Maddock, A. G., and L. H. Stein: The Solvent Extraction of Protoactinium. J. chem. Soc. [London] 1949, S 258.Google Scholar
  74. 74.
    Maxwell, R. D., J. D. Gale, W. M. Garrison and J. G. Hamilton: Carrier-free Radioisotopes from Cyclotron Targets. IV. Preparation and Isolation of 54Mn and 56,57,58Co. J. chem. Physics 17, 1340 (1949).Google Scholar
  75. 75.
    -, H. R. Haymond, W. M. Garrison and J. G. Hamilton: Carrier-free Radio isotopes from Cyclotron Targets. I. Preparation and Isolation of 113Sn and 114In from Cadmium. J. chem. Physics 17, 1005 (1949).Google Scholar
  76. 76.
    Mayer, S. W., and E. C. Freilung: Ion Exchange as a Separation Method. VI. Column Studies of the Relative Efficiencies of Various Complexing Agents for the Separation of Lighter Rare-Earths. J. Amer. chem. Soc. 75, 5647 (1953).Google Scholar
  77. 77.
    Mayneord, W. V.: The Radiography of the Human Body with Radioactive Isotopes. Brit. J. Radiol. 25, 517 (1952).Google Scholar
  78. 78.
    McKay, H. A. C., and A. R. Mathieson: The Partition of Uranyl Nitrate between Water and Organic Solvents. Part I. The State of the Uranyl Nitrate in the Organic Phase. Part II. The Partition Data and their Interpretation (E. Glueckauf and I. Jenkins). Trans. Faraday Soc. 47, 428, 431 (1951); 48, 997, 1099 (1952); 50, 107 (1954).Google Scholar
  79. 79.
    McNamara, I., C. B. Collins and H. G. Thode: The Fission Yield of 133Xe and Fine Structure in the Mass Yield Curve. Physic. Rev. 78, 129 (1950).Google Scholar
  80. 80.
    Misciatelli, P.: Sistema nitrato di uranile-etere-acqua fra o′ c 20°. Gazz. chim. ital. 60, 841 (1930).Google Scholar
  81. 81.
    Myers, R. J., D. E. Mitzler and E. K. Swift: The Distribution of Ferric Iron between Hydrochloric Acid and Isopropyl Ether Solutions. I. The Compound Extracted and the Extraction at Constant Acid Concentration. J. Amer. chem. Soc. 72, 3767 (1950).Google Scholar
  82. 82.
    Nachtrieb, N. H., and J. G. Conway: The Extraction of Ferric Chloride by Isopropyl Ether. J. Amer. chem. Soc. 70, 3547 (1948).Google Scholar
  83. 83.
    Norris, L. D., and A. B. Snell: 14C Production from NH4NO3 Solution in the Chain Reacting Pile. Science 105, 265 (1947).Google Scholar
  84. 84.
    —: Radioactive Carbon of High Specific Activity. Physic. Rev. 73, 254 (1948).Google Scholar
  85. 85.
    Norstrom, A., and L. G. Sillen: The Partition of Uranyl Nitrate between Diethyl Ether and Aqueous Nitric Acid. Svensk. Kem. Tidskr. 60, 227 (1948).Google Scholar
  86. 86.
    Overstreet, R., and L. Jacobson: Note on the Preparation of Carrier-free Caesium Tracer. U. S. Nat. Nuclear Energy Ser., Vol. 9B, Paper 286. New York: McGraw-Hill 1951.Google Scholar
  87. 87.
    —, K. Scott and J. G. Hamilton: Preparation of Carrier-free Strontium Tracer from Deuteron Bombarded Rubidium. U.S. Nat. Nuclear Energy Ser., Vol. 9B, Paper 241. New York: McGraw-Hill 1951.Google Scholar
  88. 88.
    Overstreet, R., and L. Jacobson, and J. G. Hamilton: The Metabolism of Carrier-free Fission Products in the Rat. U. S. Atomic Energy Commiss. Doc., MDDC. 1275 (1946).Google Scholar
  89. 89.
    —, and P. R. Stout: Evidence for a New Isotope of Potassium. Physic. Rev. 75, 231 (1949).Google Scholar
  90. 90.
    Paneth, F.: Radio-Elements as Indicators. New York: McGraw-Hill 1928.Google Scholar
  91. 91.
    Parker, S. W., J. Reed and J. W. Ruck: Isolation of Milligram Amounts of Element 43 from Uranium Fission. U. S. Atomic Energy Commiss. Doc., AECD. 2043 (June 1948).Google Scholar
  92. 92.
    Peppard, D. F., J. P. Faris, P. R. Gray and G. W. Mason: Studies of the Solvent Extraction Behaviour of the Transition Elements. I. Order and Degree of Fractionation of the Rare-Earths. J. physic. Chem. 57, 294 (1953).Google Scholar
  93. 93.
    -, G. W. Mason, P. R. Gray and J. F. Mech: Occurrence of the (4n+1) Series in Nature. J. Amer. chem. Soc. 74, 6081 (1952). *** DIRECT SUPPORT *** A0384010 00003Google Scholar
  94. 94.
    Peppard D.F., P.R. Gray and M.M. Markus: Actinide-Ion Analogy as Exemplified by Solvent Extraction Behaviour. J. Amer. chem. Soc. 75, 6063 (1953).Google Scholar
  95. 95.
    Perlman, I., M. E. Morton and I. Chaikoff: Radioactive Iodine as an Indicator of the Metabolism of Iodine. I. Turnover of Iodine in the Tissues of the Normal Animal with Particular Reference to the Thyroid. J. biol. Chemistry 139, 433 (1941).Google Scholar
  96. 96.
    —: Radioactive Iodine as an Indicator of the Metabolism of Iodine. IV. The Distribution of Labelled Thyroxine and Duoclotyrsine in Liver, Muscle, and Small Intestine. Endocrinology 30, 487 (1942).Google Scholar
  97. 97.
    Reid, A. F.: Multi-stage Ion Exchange System for the Fractionation of Solutes. Radium-Barium Fractionation. Ind. Engng. Chem. 40, 76 (1948).Google Scholar
  98. 98.
    Reynolds, J. H.: A Mass Spectrometric Investigation of Branching in 64Cu, 80Br, 82Br, and 128I. Physic. Rev. 79, 789 (1950).Google Scholar
  99. 99.
    Richter, H. G., and J. Irvine jr.: Solvent Extraction Studies. Mass. Inst. of Technol. Laboratory of Nuclear Sci. and Engng. Progr. Rep. (July 1st, 1950).Google Scholar
  100. 100.
    Ruben, S., and M. D. Kamen: Longlived Radioactive Carbon: C14. Physic. Rev. 59, 349 (1941).Google Scholar
  101. 101.
    Scherrer, J. A.: Distillation and Separation of Arsenic, Antimony, and Tin. J. Res. nat. Bur. Standards 16, 253 (1936).Google Scholar
  102. 102.
    Schults, M. O., and S. J. Simmons: Use of Radioactive Copper in the Study of Nutritional Anemia in Rats. J. biol. Chemistry 142, 97 (1942).Google Scholar
  103. 103.
    Schweitzer, G. K., and W. M. Jackson: Studies in Low Concentration Chemistry. I. The Radiocolloidal Properties of Lanthanum 140. J. Amer. chem. Soc. 74, 4178 (1952).Google Scholar
  104. 104.
    —: Low Concentration Chemistry. VII. Investigations on the Rôle of Adsorption in Radiocolloid Formation. J. Amer. chem. Soc. 76, 941 (1954).Google Scholar
  105. 105.
    -, and J. W. Nehls: Studies in Low Concentration Chemistry. II. The Radiocolloidal Properties of Silver 111. J. Amer. chem. Soc. 74, 6186 (1952).Google Scholar
  106. 106.
    —: Studies in Low Concentration Chemistry. IV. The Radiocolloidal Properties of Beryllium. J. Amer. chem. Soc. 75, 4354 (1953).Google Scholar
  107. 107.
    Segre, E., K. R. Mackenzie and S. R. Corson: Some Chemical Properties of Element 85. Physic. Rev. 57, 1087 (1940).Google Scholar
  108. 108.
    Soddy, F., and A. S. Russell: The Gamma Rays of Uranium and Radium. Philos. Mag. 18, 620 (1909).Google Scholar
  109. 109.
    Spedding, F. H., E. J. Fulmer, T. A. Butler, E. M. Gladrow, M. Gobush, P. E. Porter, J. E. Powell and J. M. Wright: The Separation of Rare-Earths by Ion Exchange. III. J. Amer. chem. Soc. 69, 2812 (1947). IV. J. Amer. chem. Soc. 72, 2349 (1950).Google Scholar
  110. 110.
    —and E. J. Wheelright:The Separation of Adjacent Rare-Earths with Ethylenediamine-tetracetic Acid by Elution from an Ion Exchange Resin. J. Amer. chem. Soc. 76, 612 (1954).Google Scholar
  111. 111.
    —: The Use of Copper as the Returning Ion in the Elution of Rare-Earths with Ammonium Ethylenediamine Tetraacetate Solutions. J. Amer. chem. Soc. 76, 2557 (1954).Google Scholar
  112. 112.
    -A. S. Newton, J. C. Warf, O. Johnson, R. W. Nottorf and A. Danne: Uranium Hydride. Nucleonics 4 (1) 4; (2) 17; (3) 43 (1949).Google Scholar
  113. 113.
    Stout, P. R., and W. R. Meagher: Studies of the Molybdenum Nutrition of Plants with Radioactive Molybdenum. Science 108, 471 (1948).Google Scholar
  114. 114.
    Street, K., and G. T. Seaborg: Separation of Americium and Curium from the Rare-Earth Elements. J. Amer. chem. Soc. 72, 2790 (1950).Google Scholar
  115. 115.
    Street K., S. G. Thompson and G. T. Seaborg: Chemical Properties of Californium. J. Amer. chem. Soc. 72, 4832 (1950).Google Scholar
  116. 116.
    Sugarman, N.: Characteristics of the Fission Product, Caesium 135. Physic. Rev. 75, 1473 (1949).Google Scholar
  117. 117.
    Taketatsu, T.: Extraction of Metal Chlorides, especially Ferric Chloride, by Amylacetate. J. chem. Soc. Japan pure Chem. Sect. [Nippon kagaku Zassi] 74, 82 (1953).Google Scholar
  118. 118.
    Taugbøhl, K., and K. Samsahl: A New Method for Production of Iodine 131. Joint Establishment for Nuclear Energy. Norway: Jener 34 (1954).Google Scholar
  119. 119.
    Templeton, C. C., and A. F. Hall: The Solubility of Thorium Nitrate Tetrahydrate in Organic Solvents at 25°C. J. physic. Colloid Chem. 51, 1441 (1947).Google Scholar
  120. 120.
    —: On the Solubility of Thorium Nitrate Tetrahydrate and Uranyl Nitrate Hexahydrate in Organic Solvents. Canad. J. Res. B 28, 156 (1950).Google Scholar
  121. 121.
    Thode, H. G., and R. L. Graham: Mass. Spectrometer Investigation of the Isotopes of Xenon and Krypton Resulting from the Fission of 235U with Thermal Neutrons. Canad. J. Res. A 25, 1 (1947).Google Scholar
  122. 122.
    Thompson, S. G., B. B. Cunningham and G. T. Seaborg: Chemical Properties of Berkelium. J. Amer. chem. Soc. 72, 2798 (1950).Google Scholar
  123. 123.
    -, B. G. Harvey, E. R. Chopping and G. T. Seaborg: Chemical Properties of Elements 99 and 100. J. Amer. Chem. Soc. 76, 6229 (1954).Google Scholar
  124. 124.
    Tompkins, E. R.: Separation of Radium from Barium by the Use of an Ion-Exchange Column Procedure. J. Amer. chem. Soc. 70, 3520 (1948).Google Scholar
  125. 125.
    Tompkins, P. C., L. Wish and J. X. Khym: Some Unit Operations for Preparation of Carrier-free Strontium. U. S. Nat. Nuclear Energy Ser., Vol. 9B, Paper 239. New York: McGraw-Hill 1951.Google Scholar
  126. 126.
    -A. Broids, G. W. Parker, E. R. Tompkins, W. E. Cohn, W. Kisieloski and R. D. Finkle: Procedure for Separation of Carrier-free Strontium and High Specific Activity Barium from Uranyl Nitrate by Means of Lead Sulphate. U. S. Nat. Nuclear Energy Ser.,Vol. 9B, Paper 240. New York: McGraw-Hill 1951.Google Scholar
  127. 127.
    Vermeulian, T., and M. K. Hiesten: Ion-Exchange Chromatography of Trace Components. Ind. Engng. Chem. 44, 636 (1952).Google Scholar
  128. 128.
    Vickery, R. C.: Ion-Exchange Elution Series. Nature 170, 665 (1952).Google Scholar
  129. 129.
    Vickery, R. C. Separation of the Lanthanons by Ion-Exchange. A Comparison of Eluants. J. chem. Soc. [London] 1952, 4357.Google Scholar
  130. 130.
    Wahl, A. C., and N. A. Bonner: Radioactivity Applied to Chemistry. New York: John Wiley 1951.Google Scholar
  131. 131.
    Warner, R. K.: Distribution of Uranylnitrate between Organic Solvents and Water. Austral. J. appl. Sci. 3, 156 (1952).Google Scholar
  132. 132.
    Wiles, D. R., B. W. Smith, R. Horsley and H. G. Thode: Fission Yields of the Stable and Longlived Isotopes of Caesium, Rubidium, and Strontium, and Nuclear Shell Structure. Canad. J. Physics 31, 419 (1953).Google Scholar
  133. 133.
    Wilk, M. B.: Preparation and Extraction of S35. Canad. J. Res. B 27, 475 (1949).Google Scholar
  134. 134.
    Williams, C., and F. T. Miles: Liquid Metal Fuel Reactors Systems for Power. Nucleonics 12, (7), 11 (1954).Google Scholar
  135. 135.
    Williams, R. R.: The Szilard-Chalmers Reaction in the Chain Reacting Pile. J. physic. Colloid Chem. 52, 603 (1948).Google Scholar
  136. 136.
    Wish, L., E. C. Freiling and R. Bunney: Ion-Exchange as a Separation Method. VIII. Relative Elution Position of Lanthanide and Actinide Elements with Lactic Acid Eluant at 87°C. J. Amer. chem. Soc. 76, 3444 (1954).Google Scholar
  137. 137.
    Yaffe, L.: Solubility of Uranyl Nitrate Hexahydrate and Thorium Nitrate Tetrahydrate in Organic Solvents at 20°C. Canad. J. Res. B 27, 638 (1949).Google Scholar
  138. 138.
    Yankwich, P.: Chemical Forms Assumed by 14C produced by Neutron Irradiation of Nitrogenous Substances. J. chem. Physics 15, 374 (1947).Google Scholar
  139. 139.
    -G. K. Rollefson and T. H. Norris: Chemical Forms Assumed by 14C Produced by Neutron Irradiation of Beryllium Nitride. J. chem. Physics 14, 131 (1946).Google Scholar
  140. 140.
    -, and J. D. Vaughan: Chemical Forms Assumed by C14 produced by Pile Neutron Irradiation of Ammonium Bromide: Target Dissolved in Water. J. Amer. chem. Soc. 76, 5851 (1954).Google Scholar
  141. 141.
    The Separation of Rare-Earths, Fission Product, and other Metal Ions and Anions by Adsorption on Ion-Exchange Resins. J. Amer. chem. Soc. 69, 2769–2881 (1947) (15 papers). *** DIRECT SUPPORT *** A0384010 00004Google Scholar

Copyright information

© Springer-Verlag 1955

Authors and Affiliations

  • G. B. Cook
    • 1
  • H. Seligman
    • 1
  1. 1.Atomic Energy Research EstablishmentDidcotUK

Personalised recommendations