Advertisement

Theory of Dilute Macromolecular Solutions

  • A. Isihara
  • E. Guth
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 5/2)

Abstract

The object of this paper is to lay the foundations of the Theory of Dilute Macromolecular Solutions in a unified, simplified, and yet rigorous manner. It also aims to acquaint chemists and physicists with a field of rapidly increasing significance, in view of possible applications to biophysics (and biochemistry). The Introduction gives a brief outline of the historical development of macromolecular solution theory. Roughly, one can distinguish between (a) lattice- and (b) gas-type theories, just as in the theory of liquids. The former, because of their apparent simplicity, have enjoyed great popularity for a long time among polymer chemists. However, lately, again just as for liquids, the gas-type approach has been proven to be more fundamental.

Our general approach is a proper adaptation and generalization of the gas-type theories of McMillan and Mayer and of Kirkwood and Buff. These were originally developed for simple (monomer) solutions. We use the cluster development of McMillan and Mayer, which itself is an adaptation of the original (Ursell)-Mayer cluster development. We then combine this procedure with the distribution function approach of Kirkwood and Buff.

Section 2 brings the cluster development for the osmotic pressure. Section 3 generalizes the approach of Section 2 to distribution functions, including a new and simple derivation of the cluster expansion of the pair distribution function. Section 4 presents a new expression for the chemical potential of solvents in dilute solutions. Section 5 contains an application of our general solution theory to compact macromolecular molecules. Section 6 contains the second osmotic virial coefficient of flexible macromolecules, followed in Section 7 by concluding remarks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Meyer, K. H.: Z. physik. Chem. (Leipzig) B 44, 383 (1939).Google Scholar
  2. 2.
    Fowler, R. H., and G. S. Rushbrooke: Trans. Faraday Soc. 33, 1272 (1937).CrossRefGoogle Scholar
  3. 3.
    Chang, T. S.: Proc. Cambridge Phil. Soc. 35, 265 (1939).CrossRefGoogle Scholar
  4. 4.
    Miller, A. R.: Proc. Cambridge Phil. Soc. 38, 109 (1942).Google Scholar
  5. 4a.
    The theory of solutions of high polymers. Oxford: Clarendon Press 1948.Google Scholar
  6. 5.
    Huggins, M. L.: J. Chem. Phys. 9, 440 (1941).CrossRefGoogle Scholar
  7. 5a.
    Flory, P. J.: J. Chem. Phys. 9, 660 (1941).CrossRefGoogle Scholar
  8. 6.
    Guggenheim, E. A.: Proc. Roy. Soc. A 183, 203 (1944).Google Scholar
  9. 6a.
    Mixtures. Oxford: Clarendon Press 1952.Google Scholar
  10. 7.
    Hildebrand, J. H.: J. Chem. Phys. 15, 225 (1947).CrossRefGoogle Scholar
  11. 7a.
    —, and R. L. Scott: Regular Solutions. Englewood Cliffs, New Jersey: Prentice-Hall 1962.Google Scholar
  12. 8.
    Salsburg, Z. W., and J. G. Kirkwood: J. Chem. Phys. 21, 2169 (1953).CrossRefGoogle Scholar
  13. 9.
    McMillan, W. G., and J. E. Mayer: J. Chem. Phys. 13, 276 (1945).CrossRefGoogle Scholar
  14. 9a.
    Kirkwood, J. G., and F. P. Buff: J. Chem. Phys. 19, 774 (1951).CrossRefGoogle Scholar
  15. 9b.
    Buff, F. P., and R. Brout: J. Chem. Phys. 23, 455 (1955).Google Scholar
  16. 9c.
    Hill, T.: J. Chem. Phys. 30, 93 (1959).CrossRefGoogle Scholar
  17. 10.
    The application of McMillan-Mayer theory to high polymer solutions was first made by B. H. Zimm. J. Chem. Phys. 14, 104 (1946).CrossRefGoogle Scholar
  18. 10a.
    Various developments followed this paper: Isihara, A.: J. Chem. Phys. 18, 1446 (1950), and 19, 1162 (1951).CrossRefGoogle Scholar
  19. 10b.
    J. Phys. Soc. Japan 6, 40, 66 (1951).CrossRefGoogle Scholar
  20. 10c.
    Zimm, B. H., W. H. Stockmayer, and M. Fixman: J. Chem. Phys. 21, 1716 (1953).CrossRefGoogle Scholar
  21. 10d.
    J. Chem. Phys. 21, 934 (1953).CrossRefGoogle Scholar
  22. 10e.
    More recent developments will be referred to later.Google Scholar
  23. 11.
    Fisher, M. E.: Phys. Rev. 124, 1664 (1961).CrossRefGoogle Scholar
  24. 11a.
    Kasteleyn, P. W.: Physica 27, 1209 (1961).CrossRefGoogle Scholar
  25. 12.
    Isihara, A.: J. Chem. Phys. 19, 397 (1951).CrossRefGoogle Scholar
  26. 13.
    Domb, C.: Advances in Physics 9, 149, 245 (1960).CrossRefGoogle Scholar
  27. 14.
    Wall, F. T., S. Windwer, and P. J. Gans: J. Chem. Phys. 38, 2220 (1963).CrossRefGoogle Scholar
  28. 14a.
    Methods in computational physics I. Editors B. Alder, S. Fernbach, and M. Rotenberg, p. 217. New York: Academic Press 1963.Google Scholar
  29. 14b.
    Domb, C., J. Gillis, and G. Wilmers: Proc. Phys. Soc. 85, 625 (1965).CrossRefGoogle Scholar
  30. 14c.
    Schatzki, T. F.: J. Polymer Sci. 57, 337 (1962).CrossRefGoogle Scholar
  31. 15.
    Fisher, M. E., and B. J. Hiley: J. Chem. Phys. 34, 1253 (1961).CrossRefGoogle Scholar
  32. 15a.
    Mazur, J., and L. Joseph: J. Chem. Phys. 38, 1292 (1963).CrossRefGoogle Scholar
  33. 15b.
    Edwards, S. F.: Proc. Phys. Soc. 85, 613 (1965).CrossRefGoogle Scholar
  34. 16.
    Alder, B. J.: J. Chem. Phys. 23, 263 (1955).CrossRefGoogle Scholar
  35. 17.
    Hildebrand, J. H., and R. L. Scott: Solubility of nonelectrolytes. New York: Reinhold 1950.Google Scholar
  36. 18.
    Guggenheim, E. A.: Mixtures. Oxford: Clarendon Press 1952.Google Scholar
  37. 19.
    Gee, G., and L. R. G. Treloar: Trans. Faraday Soc. 38, 147 (1942).CrossRefGoogle Scholar
  38. 19a.
    —, and W. J. C. Orr: Trans. Faraday Soc. 42, 507 (1946).CrossRefGoogle Scholar
  39. 20.
    Münster, A.: A. Naturforsch. 2, 272 (1947).Google Scholar
  40. 20a.
    Stuart, H. A.: Die Physik der Hochpolymeren. Berlin, Göttingen, Heidelberg: Springer 1952.Google Scholar
  41. 20b.
    Kurata, M., M. Tamura, and T. Watari: J. Chem. Phys. 23, 991 (1955).CrossRefGoogle Scholar
  42. 20c.
    Stockmayer, W. H.: Makromol. Chem. 35, 54 (1960) gives an interesting and short discussion of the theory of dilute polymer solutions in general. He also compares the lattice and distribution function theories somewhat similarly to our discussion.CrossRefGoogle Scholar
  43. 21.
    Kirkwood, J. G., and F. P. Buff: Loc. cit., used the q-concentration which is ϕ/N.Google Scholar
  44. 22.
    Isihara, A.: J. Chem. Phys. 18, 1446 (1950).CrossRefGoogle Scholar
  45. 22a.
    —, and T. Hayashida: J. Phys. Soc. Japan 6, 40, 46 (1951).CrossRefGoogle Scholar
  46. 23.
    Adair, G. S.: Proc. Roy. Soc. London 120 A, 573 (1923).Google Scholar
  47. 24.
    Burk, N. F.: J. Biol. Chem. 98, 353 (1932).Google Scholar
  48. 24a.
    Tanford, C.: Physical Chemistry of Macromolecules, p. 234. New York: John Wiley & Sons 1961.Google Scholar
  49. 24b.
    Simha, R.: J. Appl. Phys. 13, 147 (1942).CrossRefGoogle Scholar
  50. 25.
    Oparin, A. I.: The Origin of Life on Earth. Edinburgh: Oliver and Boyd 1957.Google Scholar
  51. 26.
    Onsager, L.: Phys. Rev. 82, 558 (1942).Google Scholar
  52. 26a.
    Ann. N. Y. Acad. Sci. 51, 627 (1949).Google Scholar
  53. 26b.
    An improved treatment is given by A. Isihara: J. Chem. Phys. 19, 1142 (1951).CrossRefGoogle Scholar
  54. 27.
    Robinson, C.: Trans. Faraday Soc. 52, 57 (1956).Google Scholar
  55. 28.
    Ward, J. C., and R. B. Beevers: Discussion. Trans. Faraday Soc. 25, 29 (1958).Google Scholar
  56. 29.
    Verwey, E. J. W., and J. Th. G. Overbeek: Theory of the stability of lypophobic colloids. Amsterdam: Elsevier Publ. Co. 1948.Google Scholar
  57. 30.
    Mayer, J. E.: J. Chem. Phys. 18, 1426 (1950).CrossRefGoogle Scholar
  58. 30a.
    Hill, T.: Discussion. Trans. Faraday Soc. 21, 31 (1956).CrossRefGoogle Scholar
  59. 31.
    Isihara, A.: J. Phys. Soc. Japan 5, 201 (1950).CrossRefGoogle Scholar
  60. 31a.
    See also Debye, P., and F. Bueche: J. Chem. Phys. 20, 1337 (1952).CrossRefGoogle Scholar
  61. 32.
    Flory, P. J., and W. R. Krigbaum: J. Chem. Phys. 18, 1085 (1950).Google Scholar
  62. 33.
    Krigbaum, W. R., and P. J. Flory: J. Am. Chem. Soc. 75, 5256 (1953).Google Scholar
  63. 34.
    Orofino, T. A., and P. J. Flory: J. Chem. Phys. 26, 1067 (1957).CrossRefGoogle Scholar
  64. 34a.
    Fixman, M.: J. Chem. Phys. 23, 1656 (1955).CrossRefGoogle Scholar
  65. 34b.
    Albrecht, A. C.: J. Chem. Phys. 27, 1002 (1957).CrossRefGoogle Scholar
  66. 34c.
    Kurata, M., and H. Yamakawa: J. Chem. Phys. 29, 311 (1958).CrossRefGoogle Scholar
  67. 34d.
    Casassa, E. F.: J. Chem. Phys. 31, 800 (1959).CrossRefGoogle Scholar
  68. 35.
    Kurata, M., and W. H. Stockmayer: Advances in Polymer Sci. 3, 196 (1963).CrossRefGoogle Scholar
  69. 36.
    Kirste, R., and G. V. Schultz: Z. phys. Chem. (Frankfurt) 27, 301 (1961).Google Scholar
  70. 37.
    Casassa, E. F., and W. H. Stockmayer: Polymer (London) 3, 53 (1962).Google Scholar
  71. 38.
    Rouse Jr., R. E.: J. Chem. Phys. 21, 1272 (1953).CrossRefGoogle Scholar
  72. 38a.
    Bueche, F.: J. Chem. Phys. 22, 603 (1954).CrossRefGoogle Scholar
  73. 38b.
    Nakada, O.: J. Phys. Soc. Japan 10, 804 (1955).CrossRefGoogle Scholar
  74. 38c.
    Zimm, B. H.: J. Chem. Phys. 24, 269 (1956).CrossRefGoogle Scholar
  75. 39.
    Kramers, H. A.: J. Chem. Phys. 14, 415 (1946).CrossRefGoogle Scholar
  76. 39a.
    Kirkwood, J. G.: Rec. Trav. Chim. 68, 649 (1949).Google Scholar
  77. 39b.
    Cf. also J. Riseman, and J. G. Kirkwood, Ch. 13, in Rheology, Vol. I. F. R. Eirich, ed. New York: Academic Press 1956.Google Scholar
  78. 40.
    Zimm, B. H., and J. L. Lundberg: J. Phys. Chem. 60, 425 (1956).CrossRefGoogle Scholar
  79. 41.
    Kurata, M.: Ann. N. Y. Acad. Sci. 89, 635 (1960).Google Scholar
  80. 42.
    Yamakawa, H.: J. Chem. Phys. 43, 1334 (1965).CrossRefGoogle Scholar
  81. 42.
    Longuet-Higgins, H. C.: Discussion. Trans. Faraday Soc. 15, 73 (1953).CrossRefGoogle Scholar
  82. 42a.
    Tompa, H.: Polymer solutions. New York: Academic Press 1956.Google Scholar
  83. 42b.
    Prigogine, I., et al.: The molecular theory of solutions. New York: North Holland Publ. Co. 1957.Google Scholar
  84. 42c.
    Rowlinson, J. S.: Liquids and Liquid Mixtures. New York: Academic Press 1959.Google Scholar
  85. 43.
    Morawetz, H.: Macromolecules in solution. New York: Interscience Publ. 1965.Google Scholar
  86. 44.
    Weissberg, S. G., R. Simha, and R. Rothmans: J. Res. Natl. Bur. Std. 47, 298 (1951).Google Scholar
  87. 45.
    Fixman, M.: J. Polymer Sci. 47, 91 (1960).CrossRefGoogle Scholar
  88. 45a.
    Grimley, T. B.: Trans. Faraday Soc. 57, 1074 (1961).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • A. Isihara
    • 1
  • E. Guth
    • 1
  1. 1.Oak Ridge National LaboratoryOak Ridge

Personalised recommendations