Advertisement

Crystallization during polymerization

  • B. Wunderlich
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 5/4)

Keywords

Bacterial Cellulose Polymer Crystal Chain Reaction Polymerization Ceiling Temperature Extend Chain Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandelkern, L.: Crystallization of polymers. New York: McGraw-Hill 1964.Google Scholar
  2. 2.
    Geil, P. H.: Polymer single crystals. New York: Interscience Publ. 1963.Google Scholar
  3. 3.
    Walker, J. F.: Formaldehyde, 3rd Ed., p. 179. New York: Reinhold Publ. 1964.Google Scholar
  4. 4.
    Flory, P. J.: Principles of polymer chemistry. Ithaca, N. Y.: Cornell Univ. Press 1953.Google Scholar
  5. 5.
    Lenz, R. W.: Organic chemistry of synthetic ligh polymers. New York: Interscience Publ. 1967.Google Scholar
  6. 6.
    Bender, M. L.: Mechanism of catalysis of nucleophilic reactions of carboxylic acid derivatives. Chem. Rev. 60, 53 (1960).CrossRefGoogle Scholar
  7. 7.
    Morgan, P. W.: Condensation polymers by interfacial and solution methods. New York: Interscience Publ. 1965.Google Scholar
  8. 8.
    Wittbecker, E. L., and P. W. Morgan: Interfacial polycondensation, Part I. J. Polymer Sci. 40, 289 (1959); (Part II to XI are subsequent papers, pp. 299–418, by the following authors and coauthors: P. W. Morgan, S. L. Kwolek, R. G. Beaman, C. R. Koller, E. L. Wittbecker, M. Katz, V. E. Shashona, W. M. Eareckson III, C. W. Stevens, J. R. Schaefgen, F. H. Koontz, R. F. Tietz, S. A. Sundet, W. A. Murphy, S. B. Speck, D. J. Lyman, and S. L. Jung).CrossRefGoogle Scholar
  9. 9.
    Coover jr., H. W., F. B. Joyner, and N. H. Shearer jr.: USP 3,075,952 (1963).Google Scholar
  10. 10.
    Chul-Yung Cha: The molecular weight distribution of poly (ethylene terephthalate) from solid state polycondensation, Polymer Preprints, Am. Chem. Soc. Polymer Div. 6, 84 (1965).Google Scholar
  11. 11.
    Flory, P. J.: USP 2,172,374 (1939); — Zimmerman, J.: Equilibria in solid phase polyamidation. Polymer Letters 2, 955 (1964).Google Scholar
  12. 12.
    Chambret, F.: Nouvel example d'une reaction en milieu solide. Bull. Soc. Chim. France, Mem. 1947, 283.Google Scholar
  13. 13.
    Morawetz, H.: Thermal reactions of organic solids. In: Physics and chemistry of the organic solid state (Ed. Fox, D., M. M. Labes, and A. Weissberger), Vol. 1, pp. 287–328 (1963) and Vol. 2, pp. 853–872 (1965). New York: Interscience 1963/1965.Google Scholar
  14. 14.
    —Oriented chain growth by polymerization in the crystalline state and by related processes. Pure Appl. Chem. 12, 201 (1966).CrossRefGoogle Scholar
  15. 15.
    —Polymerization in the solid state. J. Polymer Sci. C 12, 79 (1966).Google Scholar
  16. 16.
    Slyterman, L. A. Ae., and H. J. Veenendaal: Reaction of polypeptide esters in the solid state. Rec. Trav. Chim. 7, 137 (1952).Google Scholar
  17. 17.
    —, and M. Kooistra: Reaction of polypeptide esters in the solid state. Part II. A few cases of prevailing polycondensation. Rec. Trav. Chim. 7, 277 (1952).Google Scholar
  18. 18.
    Macchi, E. M., N. Morosoff, and H. Morawetz: Polymerization in the solid state. X. The solid state conversion of 6-aminocaproic acid into oriented nylon 6. J. Polymer Sci., to be publishedGoogle Scholar
  19. 18a.
    Morosoff, N., D. Lim, and H. Morawetz: Preparation of biaxially oriented polycaproamide by the solid state polycondensation of ɛ-aminocaproic acid. J. Am. Chem. Soc. 86, 3167 (1964).CrossRefGoogle Scholar
  20. 19.
    Fischer, E.: Synthesen von polypeptiden. XIV, Ber. 39, 453 (1906).Google Scholar
  21. 20.
    Rydon, H. N., and P. W. G. Smith: Polypeptides. Part I. The condensation of some polyglycine esters and acides. J. Chem. Soc. 1955, 2542.Google Scholar
  22. 21.
    Volokhina, A. V., G. I. Kudryavtsev, S. M. Skuratov, and A. K. Bonetskaya: The polyamidation process in the solid state. J. Polymer Sci. 53, 289 (1961).Google Scholar
  23. 22.
    Levites, E. I., A. V. Volokhina, and G. I. Kudrayavtsev: Solid phase polycondensation. IV. Solid phase co-polycondensation of aminoacids and diamine salts of dicarboxylic acids. Vysokomolekul. Soedin. 5, 875 (1963).Google Scholar
  24. 23.
    Bagramayants, B. A., A. K. Bonetskaya, N. S. Yenikolopyan, and S. M. Skuratov: The reason for the ligh temperature coefficient in solid state polycondensation of ω-amino acids. Vysokomolekul. Soedin. 8, 1594 (1966).Google Scholar
  25. 24.
    Cohen, S. M., and E. Lavin: Polyspiroacetal resins. Part I. Initial preparation and characterization. J. Appl. Polymer Sci. 6, 503 (1962).CrossRefGoogle Scholar
  26. 25.
    Cohen, S. M., C. F. Hunt, and R. E. Kass: Polyspiroacetal resins. Part II. Structure and properties. J. Appl. Polymer Sci. 6, 508 (1962).CrossRefGoogle Scholar
  27. 26.
    Capps, D. B.: USP 2,889,290, June (1959).Google Scholar
  28. 27.
    Rhoads, M. G., and P. J. Flory: The synthesis of polymeric ethers. J. Am. Chem. Soc. 72, 2216 (1950).CrossRefGoogle Scholar
  29. 28.
    Lenz, R. W., C. E. Handlovits, and H. A. Smith: Phenylene sulfide polymers. III. J. Polymer Sci. 58, 351 (1962).CrossRefGoogle Scholar
  30. 29.
    Errede, L. A., and M. Szwarc: Chemistry of p-xylylene, its analogues, and polymers. Quart. Rev. 12, 301 (1958).CrossRefGoogle Scholar
  31. 30.
    Gorham, W. F.: A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polymer Sci. Part A-1, 4, 3027 (1966).CrossRefGoogle Scholar
  32. 31.
    Niegisch, W. D.: Morphology of poly-p-xylylene. J. Polymer Sci. B, 4, 531 (1966).CrossRefGoogle Scholar
  33. 32.
    —Crystallography of poly-p-xylylene. J. Appl. Phys. 37, 4041 (1966).CrossRefGoogle Scholar
  34. 33.
    Ingram, V. M.: The biosynthesis of macromolecules. New York: W. A. Benjamin Inc. 1965.Google Scholar
  35. 34.
    Muhlethaler, K.: The structure of bacterial cellulose. Biochim. Biophys. Acta 3, 527–535 (1949).CrossRefGoogle Scholar
  36. 35.
    Brown, A. J.: On an acetic ferment which forms cellulose. J. Chem. Soc. 49, 432–439 (1886).Google Scholar
  37. 36.
    Franz, E., u. E. Schiebold: Beiträge zur Struktur der Bakteriencellulose. Makromol. Chem. 1, 4 (1943)Google Scholar
  38. 36a.
    Frey-Wyssling, A., K. Muhlethaler u. R. W. G. Wyckoff: Microfibrillenbau der pflanzlichen Zellwände. Experimentia 4, 475–476 (1948).CrossRefGoogle Scholar
  39. 37.
    Hibbert, H., and J. Barsha: Synthetic cellulose and textile fibers from glucose. J. Am. Chem. Soc. 53, 3907 (1931).CrossRefGoogle Scholar
  40. 38.
    Ross Colvin, J., and M. Beer: The formation of cellulose microfibrils in suspension of acetobacter xylinum. Can. J. Microbiol. 6, 631–637 (1960).Google Scholar
  41. 39.
    Khan, A. W., and J. Ross Colvin: Isolation of the precursor of bacterial cellulose. J. Polymer Sci. 51, 1–9 (1961).Google Scholar
  42. 40.
    Ross Colvin, J.: The biosynthesis of cellulose. In: Formation of wood in forest trees. New York: Academic Press Inc. 1964.Google Scholar
  43. 41.
    —, and D. T. Dennis: The shape of the tips of growing bacterial cellulose microfibrils and its relation to the mechanism of cellulose biosynthesis. Can. J. Microbiology 10, 763–767 (1964).Google Scholar
  44. 42.
    Millman, B., and J. Ross Colvin: The formation of cellulose microfibrils by acetobacter xylinum in agar surfaces. Can. J. Microbiol. 7, 383–387 (1961).CrossRefGoogle Scholar
  45. 43.
    Dennis, D. T., and R. D. Preston: Constitution of cellulose microfibrils. Nature 191, 667–668 (1961).Google Scholar
  46. 44.
    Ross Colvin, J.: Tip-growth of bacterial cellulose microfibrils and its relation to the crystallographic fine structure of cellulose. Polymer Letters 4, 747–754 (1966)CrossRefGoogle Scholar
  47. 44a.
    Oxidation of cellulose microfibril segments by alkaline silver nitrate and its relation to the fine structure of cellulose. J. Appl. Polymer Sci. 8, 2763–2774 (1964).Google Scholar
  48. 45.
    —Twisting of bundles of bacterial cellulose microfibrils. J. Polymer Sci. 49, 473–477 (1961).CrossRefGoogle Scholar
  49. 46.
    —The formation of spherulites in pellicles of bacterial cellulose. Can. J. Microbiol. 2, 641–643 (1965)Google Scholar
  50. 46a.
    The non-spherulitic birefringence in cellulose pellicles of acetobacter xylinum. Can. J. Microbiol. 12, 909–913 (1966).Google Scholar
  51. 47.
    —Synthesis of cellulose from ethanol. Soluble precursors in green plants. Can. J. Biochem. Physiol. 39, 1921–1926 (1961).Google Scholar
  52. 48.
    Stone, F. G. A., and W. A. G. Graham: Ed., Inorganic polymers. New York: Academic Press 1962.Google Scholar
  53. 49.
    Gimblett, R. G. R.: Inorganic polymer chemistry. London: Butterworths 1963.Google Scholar
  54. 50.
    van Wazer, J. R.: Phosphorous and its compounds. New York: Interscience 1958.Google Scholar
  55. 51.
    Callis, C. F., J. R. van Wazer, and P. G. Arvan: The inorganic phosphates as polyelectrolytes. Chem. Rev. 54, 777 (1954).CrossRefGoogle Scholar
  56. 52.
    Thilo, E., u. H. Grunze: Zur Chemie der kondensierten Phosphate und Arsenate. Teil XIII. Z. Anorg. Allg. Chem. 281, 262 (1955).CrossRefGoogle Scholar
  57. 53.
    van Wazer, J. R., and C. F. Callis: Phosphorous-based macromolecules. In: Stone, F. A. G., and W. A. G. Graham, Ed.: Inorganic Polymers, Chap. 2. New York: Academic Press 1962.Google Scholar
  58. 54.
    Malmgreen, H., u. O. Lamm: Dispersionsmessungen an hochpolymeren Kaliummetaphosphaten. Z. Anorg. Allgem. Chem. 252, 256 (1944).Google Scholar
  59. 55.
    Winkler, A., and E. Thilo: Zur Konstitution des Grahamschen Salzes II. Z. Anorg. Allgem. Chem. 298, 302 (1959).CrossRefGoogle Scholar
  60. 56.
    Wunderlich, B., E. Hellmuth, M. Jaffe, F. Liberti, and J. Rankin: Crystallization of linear high polymers from the monomer. Kolloid Z. Z. Polymere 204, 125 (1965).CrossRefGoogle Scholar
  61. 57.
    Bawn, C. E. H., and A. Ledwith: Stereoregular addition polymerization. Quart. Rev. 16, 361 (1962).CrossRefGoogle Scholar
  62. 58.
    Ham, G. E.: Helical stereospecific polymerization. J. Polymer Sci. 40, 569 (1959).CrossRefGoogle Scholar
  63. 59.
    —Idealized helical stereospecific polymerization. J. Polymer Sci. 46, 475 (1960).CrossRefGoogle Scholar
  64. 60.
    —The role of symmetry in crystallization and polymerization phenomena. J. Polymer Sci. 61, 293 (1962).CrossRefGoogle Scholar
  65. 61.
    Sperati, C. A., and H. W. Starkweather Jr.: Fluorine containing polymers II. Polytetrafluoroethylene. Fortschr. Hochpolym.-Forsch. 2, 465 (1961).CrossRefGoogle Scholar
  66. 62.
    Wunderlich, B., and E. Hellmuth: Superheating studies on polymer crystals. In: Thermal analysis, 1965, p. 76. J. P. Redfern, Ed. London: Macmillan and Co. Ltd. 1965.Google Scholar
  67. 63.
    Hellmuth, E., B. Wunderlich, and J. M. Rankin Jr.: Superheating of linear high polymers. Polytetrafluoroethylene, Applied Polymer Symposia 2, 101 (1966).Google Scholar
  68. 64.
    Symons, N. K. J.: Growth of single crystals of polytetrafluoroethylene from the melt. J. Polymer Sci. A, 1, 2843 (1963).Google Scholar
  69. 65.
    Morosoff, N., H. Morawetz, and B. Post: Polymerization in the solid state. VII. A crystallographie study of the radiation initiated polymerization in single crystals of vinyl stearate. J. Am. Chem. Soc. 87, 3035 (1965).CrossRefGoogle Scholar
  70. 66.
    Jakabhazy, S. Z., H. Morawetz, and N. Morosoff: Polymerization in the crystalline state. V. Oriented chain growth in the thermally initiated polymerization of p-acetamidostyrene and p-benzamidostyrene. J. Polymer Sci. Part C, 4, 805 (1964).Google Scholar
  71. 67.
    Fujimoto, S.: A topochemical study of the polymerization of terephthalonitril oxide. Polymer Letters 5, 301 (1967).CrossRefGoogle Scholar
  72. 68.
    O'Donnell, J. H., B. McGarvey, and H. Morawetz: Polymerization in the solid state. VI. ESR-study of the propagating species in a polymerizing single crystal of barium methacrylate dihydrate. J. Am. Chem. Soc. 86, 2322 (1964).CrossRefGoogle Scholar
  73. 69.
    Lando, J. B., and H. Morawetz: Polymerization in the crystalline state. IV. Calcium and barium methycrylate. J. Polymer Sci. C, 4, 789 (1964).Google Scholar
  74. 70.
    White, D. M.: Stereospecific polymerization in urea canal complexes. J. Am. Chem. Soc. 82, 5678 (1960).CrossRefGoogle Scholar
  75. 71.
    Brown jr., J. F., and D. M. White: Stereospecific polymerization in thiourea canal complexes. J. Am. Chem. Soc. 82, 5671 (1960).CrossRefGoogle Scholar
  76. 72.
    Krimm, S., J. J. Shipman, V. L. Folt, and A. R. Berens: Infrared evidence for solid state constraints on chain conformations in poly (vinyl chloride). Polymer Letters 3, 275 (1965).CrossRefGoogle Scholar
  77. 73.
    Szwarc, M.: Termination of anionic polymerization. Fortschr. Hochpolymer.-Forsch. 2, 275 (1960).Google Scholar
  78. 74.
    Staudinger, H., H. Johner, R. Signer, G. Mie u. J. Hengstenberg: Der polymere Formaldehyd, ein Modell der Zellulose. Z. Physik. Chem. 126, 425 (1927).Google Scholar
  79. 75.
    Sauter, E.: Über hochmolekulare Verbindungen. 71. Mitteilung. Röntgenometrische Untersuchungen an hochmolekularen Polyoxymethylenen. Z. Physik. Chem. B 18, 417 (1932).Google Scholar
  80. 76.
    Brown, N.: Polymerization of formaldehyde. J. Macromol. Sci. (Chem.) A 1, 209 (1967).Google Scholar
  81. 77.
    Yamaoka, H., K. Hayashi, and S. Okamura: Gamma-ray induced polymerization of formaldehyde. Makromol. Chem. 76, 196 (1964).CrossRefGoogle Scholar
  82. 78.
    Baccaredda, M., E. Butta, and P. Giusti: Production of polyoxymethylene of high molecular weight and high crystallinity from trioxane. J. Polymer Sci. Part C, 4, 953 (1964).CrossRefGoogle Scholar
  83. 79.
    Furukawa, J., and T. Saegusa: Polymerization of aldehydes and oxides New York: Interscience 1963.Google Scholar
  84. 80.
    Kern, W., and V. Jaacks: Some kinetic effects in the polymerization of 1,3,5-trioxane. J. Polymer Sci. 48, 399 (1960).CrossRefGoogle Scholar
  85. 81.
    Jaacks, V., u. W. Kern: Initiatoren für die Polymerisation des Trioxans. Makromol. Chem. 62, 1 (1963).CrossRefGoogle Scholar
  86. 82.
    Leese, L., and M. W. Baumber: Kinetics and mechanism of trioxan-polymerization. Polymer 6, 269 (1965).CrossRefGoogle Scholar
  87. 83.
    Price, M. B., and F. B. McAndrew: The polymerization and copolymerization of trioxane. J. Macromol. Sci. (Chem.), A 1, 231 (1967).Google Scholar
  88. 84.
    Kohlschütter, H. W., u. L. Sprenger: Über die Umwandlung kristallisierten Trioxymethylens zu hochmolekularen Polyoxymethylen. Z. Physik. Chem. B 16, 284 (1932).Google Scholar
  89. 85.
    Hayashi, K., H. Ochi, and S. Okamura: Radiation-induced post polymerization of trioxane in the solid state. J. Polymer Sci. A, 2, 2929 (1964).Google Scholar
  90. 86.
    Okamura, S., T. Higashimura, and K. Takeda: Cationic polymerization of trioxane in solid state. Makromol. Chem. 51, 217 (1962).CrossRefGoogle Scholar
  91. 87.
    — E. Kobayashi, M. Takeda, K. Tomikawa, and T. Higashimura: Cationic polymerization of trioxane in solid phase. J. Polymer Sci. C 4, 827 (1964).Google Scholar
  92. 88.
    Carazzolo, G., S. Leghissa, and M. Mammi: Polyoxymethylene from trioxane by solid state polymerization: A case of twinning in a synthetic polymer. Makromol. Chem. 60, 171 (1963).CrossRefGoogle Scholar
  93. 89.
    The polymerization of crystalline trioxane: Phil. Mag. 13 (1966)Google Scholar
  94. 89a.
    I. Evidence for a Cooperative Mechanism, H. B. van der Heijde and H. Nauta, p. 1015Google Scholar
  95. 89b.
    II. Experiments with Irradiated Trioxane (and Tetroxane) Calculation of the Crystal Field of Trioxane, H. Nauta, p. 1023Google Scholar
  96. 89c.
    III. Experiments with Irradiated Trioxane Single Crystals, H. B. van der Heijde and P. H. G. van Kasteren, p. 1039Google Scholar
  97. 89d.
    IV. The Spontaneous Polymerization, H. B. van der Heijde, p. 1055.Google Scholar
  98. 90.
    Jaffe, M., and B. Wunderlich: Melting of polyoxymethylene. Kolloid Z. Z. Polymere 216–217, 203 (1967).CrossRefGoogle Scholar
  99. 91.
    Amano, T., E. W. Fischer, and G. Hinrichsen: Refolding of chains during annealing of radiation polymerized trioxan. J. Macromol. Sci. (Phys.) (to be published).Google Scholar
  100. 92.
    Jaffe, M., and B. Wunderlich: The effect of X-rays on extended chain crystals of polyoxymethylene. J. Polymer Sci. A 2, 6, 825 (1968).Google Scholar
  101. 93.
    Lando, J. B., and V. Stannett: Radiation polymerization of crystalline trithiane. J. Polymer Sci. A, 3, 2369 (1965).Google Scholar
  102. 94.
    —Polymerization in the crystalline state, investigation of topochemical effects. Polymer Preprints. Am. Chem. Soc. 8, 99 (1967).Google Scholar
  103. 95.
    Hayashi, K., M. Nishii, and S. Okamura: Structure of polymers formed by radiation-induced solid phase polymerization of cyclic monomers. J. Polymer Sci. C-4, 839 (1964).Google Scholar
  104. 96.
    Vogl, O.: Polymerization of aliphatic aldehydes. J. Macromol. Sci. (Chem.) A 1, 243 (1967).Google Scholar
  105. 97.
    Inoue, S., Y. Tmoi, T. Tsuruta, and J. Furukawa: Organometallic-catalyzed polymerization of propiolactone. Makromol. Chem. 48, 229 (1961).CrossRefGoogle Scholar
  106. 98.
    Alper, R., D. G. Lundgren, R. H. Marchessault, and W. A. Cote: Properties of poly-β-hydroxybutyrate. I. General considerations concerning the naturally occuring polymer. Biopolymers 1, 545 (1963).CrossRefGoogle Scholar
  107. 99.
    Okamura, K.: Physical properties of poly-β-hydroxybutyrate. Thesis, Dept. of Forest Chemistry, State University College of Forestry at Syracuse University, Syracuse N. Y., 1967.Google Scholar
  108. 100.
    Merrick, J. M., and M. Doudoroff: Depolymerization of poly-β-hydroxybutyrate by an intracellular enzyme system. J. Bacteriol 88, 60 (1964).Google Scholar
  109. 101.
    Wichterle, O., J. Šebenda, and J. Králíček: The anionic polymerization of caprolactam. Fortschr. Hochpolym.-Forsch. 2, 578 (1961).CrossRefGoogle Scholar
  110. 102.
    Tomka, J., J. Šebenda, and O. Wichterle: On the structure and properties of polyamides. XXVIII. Crystallization of polycaprolactam without a thermal history. J. Polymer Sci. C 16, 53 (1967).Google Scholar
  111. 103.
    Wunderlich, B., and F. Liberti: Zone polymerization of caprolactam to the crystalline state. Bull. Am. Phys. Soc. 11, 248 (1966).Google Scholar
  112. 104.
    Liberti, F., and B. Wunderlich: Melting of caprolactam. J. Polymer Sci. A 2, 6, 833 (1968).Google Scholar
  113. 105.
    Katchalski, E., and M. Sela: Synthesis and chemical properties of poly-α-amino acids. Adv. Protein Chem. 13, 243 (1958).Google Scholar
  114. 106.
    Miller, E., I. Fankuchen, and H. Mark: Polymerization in the solid state. J. Appl. Phys. 20, 531 (1940). For later work see: Kovacs, G., E. Kovacs, and H. Morawetz: Polymerization in the crystalline state. VIII. Polymerization in N-carboxy anhydrides of γ-benzyl glutamat, γ-methyl glutamat, and ε-carbobenzoxylysine, J. Polymer Sci. A 1, 4, 1533, (1966).CrossRefGoogle Scholar
  115. 107.
    Szwarc, M.: The kinetics and mechanism of N-carboxy-α-amino-acid anhydride (NCA) polymerization to poly-amino acids. Fortschr. Hochpolym.-Forsch. 4, 1 (1965).CrossRefGoogle Scholar
  116. 108.
    Glusker, D. L., I. Lysloff, and E. Stiles: The mechanism of the anionic polymerization of methyl methacrylate. J. Polymer Sci. 49, 315 (1961).CrossRefGoogle Scholar
  117. 109.
    Kantor, S. W., and R. C. Osthoff: High molecular weight polymethylene. J. Am. Chem. Soc. 75, 931 (1953).CrossRefGoogle Scholar
  118. 110.
    Bawn, C. E. H., A. Ledwith, and P. Matthies: The mechanism of the polymerization of diazoalkanes catalyzed by boron compounds. J. Polymer Sci. 34, 93 (1959).CrossRefGoogle Scholar
  119. 111.
    Arakawa, T., and B. Wunderlich: Thermodynamics of extended chain polymethylene single crystals. J. Polymer Sci. C 16, 653 (1967).Google Scholar
  120. 112.
    Hellmuth, E., and B. Wunderlich: Superheating of linear high polymer polyethylene crystals. J. Appl. Phys. 36, 3039 (1965).CrossRefGoogle Scholar
  121. 113.
    Niegisch, W. D.: Published in Ref. [2] p. 479.Google Scholar
  122. 114.
    Blais, P., and R. St. J. Manley: The morphology of nascent polyolefins prepared by Ziegler-Natta catalysts. J. Polymer Sci. A 1, 6, 291 (1968).Google Scholar
  123. 115.
    Cormier, C. M., and B. Wunderlich: Equilibrium dissolution temperature of polyethylene and the surface free energy of folded-chain single crystals. J. Polymer Sci. A, 4, 666 (1966).Google Scholar
  124. 116.
    Shell Research Ltd.: Carrington Plastics Lab., Ziegler Polyethylene Paper Manufacture, Product Licensing Index. 40, 25 (August 1967).Google Scholar
  125. 117.
    Keller, A., and F. M. Willmouth: On the morphology of the fibres observed in nascent Ziegler-polyethylene (to be published).Google Scholar
  126. 118.
    —, and M. J. Machin: Oriented crystallization in polymers. J. Macromol. Sci. (Phys.) B 1, 41 (1967).Google Scholar
  127. 119.
    Reich, L., and A. Schindler: Polymerization by organometallic compounds. New York: Interscience Publ. 1966.Google Scholar
  128. 120.
    Studies on Ziegler Natta Catalysts: J. Polymer Sci. A-1 (1966).Google Scholar
  129. 120a.
    Rodriguez, L. A. M., H. M. van Looy, and J. A. Gabant: Part I. Reaction between Trimethylaluminium and α-Titanium Trichloride, p. 1905Google Scholar
  130. 120b.
    Part II. Reaction between α-or β-TiCl3 and AlMe3, AlMe2Cl, or AlEt3 at Various Temperatures, p. 1917.Google Scholar
  131. 120c.
    van Looy, H. M., L. A. M. Rodriguez, and J. A. Gabant: Part III. Composition of the nonvolatile product of the reaction between titanium trichloride and trimethylaluminum or dimethylaluminum chloride, p. 1927.Google Scholar
  132. 120d.
    Rodriguez, L. A. M., and H. M. van Looy: Part IV. Chemical nature of the active site, p. 1951. Part V. Stereospecificity of the active center, p. 1971.Google Scholar
  133. 121.
    Mackie, P., M. N. Berger, B. M. Grieveson, and D. Lawson: Replication in Zielger polymerization. Polymer Letters 5, 493 (1967).CrossRefGoogle Scholar
  134. 122.
    Chanzy, H., A. Day, and R. H. Marchessault: Polymerization on glass-supported vanadium trichloride: Morphology of nascent polyethylene. Polymer 8, 567 (1967).CrossRefGoogle Scholar
  135. 123.
    Blais, P., and R. St. Manley: Morphology of Nascent Ziegler-Natta Polymers, Science, 153, 539 (1966).Google Scholar
  136. 124.
    Wikjord, A., and R. St. J. Manley: The morphology of fibrillar polyethylene crystals (to be published).Google Scholar
  137. 125.
    Ingram, P., and A. Schindler: Morphology of as-polymerized polyethylene. II. Electron microscopy. Makromol. Chem. 111, 267 (1968).CrossRefGoogle Scholar
  138. 126.
    Wunderlich, B., L. Melillo, C. M. Cormier, T. Davidson, and G. Snyder: Surface melting and crystallization of polyethylene. J. Marcomol. Sci. (Phys.) B 1, 485 (1967).Google Scholar
  139. 127.
    Lieser, Th.: Wasserlösliche Zellulose. Kolloid-Z. 98, 142 (1942).CrossRefGoogle Scholar
  140. 128.
    Lucas, F., J. T. B. Shaw, and S. G. Smith: The Silk fibroin, Advan. Protein Chem. 13, 107 (1958).CrossRefGoogle Scholar
  141. 129.
    Magill, J. H., S. S. Pollack, and D. P. Wyman: Glass-temperature and crystal modification of linear polyethylene. J. Polymer Sci. A 3, 3781 (1965).Google Scholar
  142. 130.
    Hamada, F., B. Wunderlich, T. Sumida, S. Hayashi, and A. Nakajima: Density and heat of fusion of folded chain polyethylene crystals. J. Phys. Chem. 72, 178 (1968).CrossRefGoogle Scholar
  143. 131.
    Wunderlich, B.: The melting of defect polymer crystals. Polymer 5, 611 (1964).CrossRefGoogle Scholar
  144. 132.
    Wunderlich, B., and C. M. Cormier: Seeding of supercooled polyethylene with extended chain crystals. J. Phys. Chem. 70, 1844 (1966).Google Scholar
  145. 133.
    —, and T. Arakawa: Polyethylene crystallized from the melt under elevated pressure. J. Polymer Sci. A 2, 3697 (1964).Google Scholar
  146. 134.
    Starkweather Jr., H. W.: Crystalline organization in useful plastics. SPE Transact. 3, 57 (1963).Google Scholar
  147. 135.
    Jaffe, M., and B. Wunderlich: Superheating of extended chain polymer crystals, to be published in the Proceedings of the Second Meeting of the International Conference on Thermal Analysis. 1968.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • B. Wunderlich
    • 1
  1. 1.Dept. of ChemistryRensselaer Polytechnic Institute Troy

Personalised recommendations