Ionic forces in polymers

Some properties of the polyphosphates in the glass transition region
  • Adi Eisenberg
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 5/1)


This paper has reviewed several studies, particularly those performed on the phosphate polymers, in which ionic forces were important in determining the properties or behavior of the material. Only very few properties were investigated; among these were 1) the glass transitions as a function of the molecular weight, the nature of the terminal group, and the nature of the counterion, 2) the viscoelastic properties as a function of the counterion and 3) the viscoelastic relaxation mechanism, with specific emphasis on the separation of the α and x mechanisms. In this treatment, a deliberate attempt was made to present pertinent theories, insofar as they exist, but it seems evident that here as much work remains to be done as on the experimental level, if not more.

A host of other properties remain to be investigated quantitatively, although a beginning has certainly been made. These include the effect of various types of ionic interactions on organic materials (Sect. I-B) including both crystalline and amorphous polymers. Only bulk properties have been discussed here, but although the literature on polyelectrolyte solutions is voluminous, the transition region between these two areas, i.e., that of the plasticized ionic polymers, again has not received its due attention, perhaps due to the difficulties encountered in both the theoretical and experimental approaches.


Glass Transition Glass Transition Temperature Stress Relaxation Viscoelastic Property Master Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bamann, E., and M. Meisenheimer: Spaltung von Estern der Phosphorsäure in Gegenwart von Lanthanhydroxyd (I. Mitteil. über „Phosphatatische“ Wirkungen von Hydrogelen). Ber. 17, 1711–1720 (1938).Google Scholar
  2. 2.
    Barrall, E. M., R. J. Schmidt, and J. F. Johnson: Asphalt Transition at Low Temperature: Measurement Using Thermal Expansion Apparatus. J. Inst. Petrol. 57, 162–168 (1965).Google Scholar
  3. 3.
    Beevers, R. B., and E. F. T. White: Physical Properties of Vinyl Polymers. Part I. Dependence of the Glass Transition Temperature of Polymethyl Methalcrylate on Molecular Weight. Trans. Farad. Soc. 56, 744–752 (1960).CrossRefGoogle Scholar
  4. 4.
    Stress Relaxation in Crosslinked Poly(Ethylene Tetrasulfide). J. Coll. Sci. 19, 40–49 (1964).CrossRefGoogle Scholar
  5. 5.
    Berry, J. P., and W. F. Watson: Stress Relaxation of Peroxide and Sulfur Vulcanizates of Natural Rubber. J. Polymer Sci. 18, 201–213 (1955).CrossRefGoogle Scholar
  6. 6.
    Boyer, R. F., ed.: Transitions and Relaxation in Polymers. J. Polymer Sci. C (1966) in press.Google Scholar
  7. 7.
    Bueche, A. M.: Stress Relaxation in Elastomers. J. Chem. Phys. 21, 614–616 (1953).CrossRefGoogle Scholar
  8. 8.
    Bueche, F.: Physical Properties of Polymers. New York: Interscience 1962.Google Scholar
  9. 9.
    Butcher, W. W., and F. H. Westheimer: The Lanthanum Hydroxide Gel Promoted Hydrolysis of Phosphate Esters. J. Am. Chem. Soc. 77, 2420–2424 (1955).CrossRefGoogle Scholar
  10. 10.
    Callis, C. F., J. R. van Wazer, and J. S. Metcalf: Structure and Properties of the Condensed Phosphates. IX. Viscosity of Molten Sodium Phosphates. J. Am. Chem. Soc. 77, 1471 (1955).CrossRefGoogle Scholar
  11. 11.
    Cool, L. G., A. Eisenberg, and H. Farb: Unpublished results.Google Scholar
  12. 12.
    Corbridge, D. E. C.: The Crystal Structure of Rubidium Metaphosphate. Acta Cryst. 9, 308–314 (1956).CrossRefGoogle Scholar
  13. 13.
    Dimarzio, E. A., and J. H. Gibbs: Glass Temperatures of Copolymers. J. Polymer Sci. 40, 123–131 (1959).Google Scholar
  14. 14.
    — —Molecular Interpretation of Glass Temperature Depression by Plasticizers. J. Polymer Sci. A 1, 1417–1428 (1963).Google Scholar
  15. 15.
    On the Second-Order Transitions of a Rubber. J. Res. Natl. Bur. Std. 68 A, 611 (1964).Google Scholar
  16. 16.
    Eisenberg, A., S. Saito, and T. Sasada: Viscoelastic Relaxation Mechanisms of Inorganic Polymers. V. Counterion Effects in Bulk Polyelectrolytes. In: High Temperature Polymers; C. Segal ed., Marcel Dekker, 1966 (Volume containing papers presented at Symposium on High Temperature Polymers, A. C. S. West Coast Regional Meeting, Los Angeles, 1965).Google Scholar
  17. 17.
    —, and T. Sasada: Viscoelastic Relaxation Mechanisms of Inorganic Polymers. III. The Sodium Polyphosphates. J. Polymer Sci. C (1966). (Issue containing papers of IUPAC Macromolecular Symposium, Prague, 1965).Google Scholar
  18. 18.
    Eisenberg, A., and L. A. Teter: The Viscoelastic Relaxation Mechanism of Inorganic Polymers: Amorphous Selenium. J. Am. Chem. Soc. 87, 2108–2113 (1965).CrossRefGoogle Scholar
  19. 19.
    —, H. Farb, and L. G. Cool: Glass Transitions in Ionic Polymers. J. Polymer Sci. A 2 4, 855 (1966).CrossRefGoogle Scholar
  20. 20.
    —, and S. Saito: The Possible Experimental Equivalence of the Gibbs-DiMarzio and the Free Volume. Theories of the Glass Transition. J. Chem. Phys. 45, 1673 (1966).CrossRefGoogle Scholar
  21. 21.
    — —, and L. A. Teter: Viscoelastic Relaxation Mechanisms. IV. Simultaneous Multiple Mechanisms. J. Polymer Sci. C, 14, 323 (1966). (Issue containing papers on “Transitions and Relaxations in Polymers”, Preseuted at Symposium of A C. S., Atlantic City, 1965; see Ref. 6.)Google Scholar
  22. 22.
    — — Molecular Flow and Lanthanum Catalyzed Bond Interchange in Sodium Phosphate Polymers. Submitted to J. Macromol. Chem.Google Scholar
  23. 23.
    —, and T. Sasada: Molecular Weight Dependence of the Glass Transition Temperatures in Sodium Phosphate Polymers. In: Physics of Non-Crystalline Solids. Proceedings of the International Conference, Delft, July, 1964. Amsterdam: North-Holland Publishing Co. 1963.Google Scholar
  24. 24.
    —, and L. G. Cool: Glass Transition in the B2O3-Na2O System. Unpublished.Google Scholar
  25. 25.
    —, and K. Takahashi: Glass Transitions in the SiO2-Na2O System. Unpublished.Google Scholar
  26. 26.
    Erdi, N. Z., and H. Morawetz: Polymer Association. V. Solution Behavior and Rheology of Neutralized Styrene — Methacrylic and Polymers. J. Colloid Sci. 19, 708–721 (1964).CrossRefGoogle Scholar
  27. 27.
    Ferry, J. D., W. C. Child Jr., R. Zand, D. M. Stern, M. L. Williams, and R. F. Landel: Dynamic Mechanical Properties of Polyethyl Methacrylate. J. Colloid Sci. 12, 53–67 (1957).CrossRefGoogle Scholar
  28. 28.
    — —Dynamic Mechanical Properties of Poly-n-Butyl Methacrylate. J. Colloid Sci. 12, 327–341 (1957).CrossRefGoogle Scholar
  29. 29.
    — —Dynamic Mechanical Properties of Poly-n-Hexyl Methacrylate. J. Colloid Sci. 12, 389–399 (1957).CrossRefGoogle Scholar
  30. 30.
    Fitzgerald, W. E., and L. E. Nielsen: Viscoelastic Properties of the Salts of Some Polymeric Acids. Proc. Roy. Soc. A 282, 137–146 (1964).Google Scholar
  31. 31.
    Fox, T. G., and P. J. Flory: Second Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. J. Appl. Phys. 21, 581–591 (1950).CrossRefGoogle Scholar
  32. 32.
    —, and S. Loshaek: Influence of Molecular Weight and Degree of Cross-linking on the Specific Volume and Glass Transition Temperature of Polymers. J. Polymer Sci. 15, 371–390 (1955).CrossRefGoogle Scholar
  33. 33.
    Influence of Diluent and Copolymer Composition on the Glass Temperature of a Polymer System. Bull. Am. Phys. Soc. 1, 123 (1956).Google Scholar
  34. 34.
    Gibbs, J. H., and E. A. DiMarzio: Nature of the Glass Transition and the Glassy State. J. Chem. Phys. 28, 373–383 (1958).CrossRefGoogle Scholar
  35. 35.
    Nature of Glass Transitions and the Vitreous State. In: Mackenzie, ed. Modern Aspects of the Vitreous State (J. D. Mackenzie, ed.). London: Butterworths 1960.Google Scholar
  36. 36.
    Gray, C. A.: The Mechanical Properties of Polyelectrolyte Complexes. Ph. D. Thesis, M. I. T., Boston 1965.Google Scholar
  37. 37.
    Hill, T. L.: Introduction to Statistical Thermodynamics. pp. 106–107, 490–495. Reading, Mass.: Addison-Wesley 1960.Google Scholar
  38. 37a.
    Hoff, E. A. W., D. W. Robinson, and A. H. Willbourn: J. Polymer Sci. 18, 161 (1955).CrossRefGoogle Scholar
  39. 38.
    Jenkel, E.: Die Wirkung von Weichmachern und ihre molekulare Deutung, p. 583. In: Die Physik der Hochpolymeren. Vol. IV. (Ed. H. A. Stuart). Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  40. 39.
    Kanig, G.: Zur Theorie der Glastemperatur von Polymerhomologen, Copolymeren und Weichgemachten Polymeren. Kolloid Z. 190, 1 (1963).CrossRefGoogle Scholar
  41. 40.
    Krogh-Moe, J.: New Evidence on the Boron Coordination in Alkali Borate Glasses. Phys. Chem. Glasses 3, 1–6 (1962).Google Scholar
  42. 41.
    Mehrotra, R. C., and V. S. Gupta: Studies in Condensed Phosphates. Part VI. Paper Chromatographic Studies of Condensed Phosphates. J. Polymer Sci. A 2, 3959–3962 (1964).Google Scholar
  43. 42.
    —, and P. C. Vyas: Studies in Condensed Phosphates. Part VIII. Complex Potassium Polymetaphosphate of Calcium, Zinc, and Cadmium. J. Polymer Sci. A 3, 2535–2540 (1965).Google Scholar
  44. 43.
    Miyake, A.: On the Relaxation Time Spectra of Solid Polymers. J. Polymer Sci. 22, 560–563 (1956).CrossRefGoogle Scholar
  45. 44.
    Mikhailov, G. P.: Dielectric Losses and Polarization of Polymers. J. Polymer Sci. 30, 605 (1958).CrossRefGoogle Scholar
  46. 45.
    Moacanin, J., and E. F. Cuddihy: Effect of Polar Forces on the Viscoelastic Properties of Poly(Propylene Oxide). Polymer Preprints 6, No. 2, 799–806 (1965).Google Scholar
  47. 46.
    —, and R. Simha: A Commentary on the Gibbs-DiMarzio Theory of the Glass Transition. J. Chem. Phys. in press.Google Scholar
  48. 47.
    Rees, R. W., and D. J. Vaughn: “Surlyn” A Isomers. I. The Effects of Ionic Bonding on Polymer Structure. Polymer Preprints 6, No. 1, 287–295 (1965).Google Scholar
  49. 48.
    Simha, R., and R. F. Boyer: On a General Relation Involving the Glass Temperature and Coefficients of Expansion of Polymers. J. Chem. Phys. 37, 1003–1007 (1962).CrossRefGoogle Scholar
  50. 49.
    Sobue, H., and K. Murakami: Maximum Relaxation Time on Polymers in the Vicinity of Critical Molecular Weight. J. Polymer Sci. A 1, 2039–2047 (1963).Google Scholar
  51. 50.
    Strauss, U. P., and E. H. Smith: Polyphosphates as Polyelectrolytes. II. Viscosity of Aqueous Solutions of Graham's Salts. J. Am. Chem. Soc. 75, 6186 (1953).CrossRefGoogle Scholar
  52. 51.
    Takahashi, K.: Binary Phosphate, Silicophosphate Borophosphate, and Aluminophosphate Glasses, Their Structure and Properties, p. 366. Proc. 6th International Congress on Glass. Washington, D. C. 1962.Google Scholar
  53. 52.
    Thilo, E.: Anorganische Salze hochmolekularer Anionen im Gelosten und im festen Zustand. Abhandl. Deut. Akad. Wiss. Berlin, Kl. Chem. Geol. Biol. No. 7, 57 (1955).Google Scholar
  54. 53.
    Tobolsky, A. V., and K. Murakami: Existence of a Sharply Defined Maximum Relaxation Time for Monodisperse Polystyrene. J. Polymer Sci. 40, 443–456 (1959).CrossRefGoogle Scholar
  55. 54.
    Tobolsky, A. V.: Properties and Structure of Polymers. New York: John Wiley 1960.Google Scholar
  56. 55.
    Tobolsky, A. V.: Relaxation and Normal Mode Distribution. J. Chem. Phys. 37, 1575 (1962).CrossRefGoogle Scholar
  57. 56.
    —, R. B. Beevers, and G. D. T. Owen: The Viscoelastic Properties of Crosslinked Poly (Ethylene Tetrasulfide). I. J. Colloid Sci. 18, 353–358 (1963).CrossRefGoogle Scholar
  58. 57.
    — — —The Viscoelastic Properties of Crosslinked Poly (Ethylene Tetrasulfide) Polymers. II. J. Colloid Sci. 18, 359–369 (1963).CrossRefGoogle Scholar
  59. 58.
    —, and R. B. Taylor: Viscoelastic Properties of a Simple Organic Glass. J. Phys. Chem. 67, 2439–2442 (1963).Google Scholar
  60. 59.
    Tobolsky, A. V.: Measurement of Random Scission by Stress Relaxation. Polymer Letters 2, 637–641 (1964).CrossRefGoogle Scholar
  61. 60.
    —, and J. J. Aklonis: O. N. R. Technical Report RLT 88. Princeton 1965.Google Scholar
  62. 61.
    —, V. Johnson, and W. J. Macknigth: Clevage Reactions in Crosslinked Urethane Elastomers. J. Phys. Chem. 69, 476–480 (1965).Google Scholar
  63. 62.
    Treloar, L. R.: The Physics of Rubber Elasticity. London: Oxford University Press 1958.Google Scholar
  64. 63.
    Überreiter, K., and G. Kanig: Self-Plasticization of Polymers. J. Colloid Sci. 7, 569–583 (1952).CrossRefGoogle Scholar
  65. 64.
    —, and U. Rhode-Liebenau: Der Einfluß der Endgruppen auf die Glastemperatur und Fließtemperatur von Makromolekularen Gläsern. Makromol. Chem. 49, 164–181 (1961).CrossRefGoogle Scholar
  66. 65.
    Van Wazer, J. R., and E. Karl-Kroupa: Existence of Ring Phosphates Higher than the Tetramethaphosphates. J. Am. Chem. Soc. 48, 1772 (1956).CrossRefGoogle Scholar
  67. 66.
    Phosphorus and Its Compounds, Vol. I. New York: Interscience Publishers 1958.Google Scholar
  68. 67.
    Structural Reorganization Through Ligand Interchange. Am. Sci. 50, 450–472 (1962).Google Scholar
  69. 68.
    Wall, F. T.: Statistical Thermodynamics of Rubber II. J. Chem. Phys. 10, 485–488 (1942).CrossRefGoogle Scholar
  70. 69.
    Statistical Thermodynamics of Ruber III. J. Chem. Phys. 11, 527–530 (1943).CrossRefGoogle Scholar
  71. 70.
    Westman, A. E. R., and A. E. Scott: Chromatographic Evidence for the Tetraphosphate Ion. Nature 168, 740 (1951).Google Scholar
  72. 71.
    Constitution of Phosphate Glasses. CH. 4 of Modern-Aspects of the Vitreous State (J. D. MacKenzie, ed.). New York: Butterworths 1960.Google Scholar
  73. 72.
    Williams, M. L., R. F. Landel, and J. D. Ferry: The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  74. 73.
    Yu, H.: On the Measurement of Random Chain Scission by Stress Relaxation. Polymer Letters 2, 631–635 (1964).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • Adi Eisenberg
    • 1
  1. 1.Contribution No. 1976 from the Department of ChemistryUniversity of CaliforniaLos Angeles

Personalised recommendations