Advertisement

Low frequency motions in polymers as measured by neutron inelastic scattering

  • G. J. Safford
  • A. W. Naumann
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 5/1)

Abstract

This review has summarized the applications of neutron inelastic scattering to the study of polymers. The technique has proven useful for measuring and characterizing low-frequency intramolecular and intermolecular vibrations, particularly for those systems, such as polyethylene and the n-paraffins, for which theoretical calculations of phase-frequency relations are available. More calculations of this type, and extension of them to include the effects of departures of chain conformations from their ideal transplanar or helical configurations, are needed for an optimum application of the method.

Further work is also needed on both the prediction and measurement of directional frequency distributions. These would allow more definitive and more detailed information to be obtained on intermolecular and anharmonic forces, and on the effect of these factors on the properties of polymers.

Keywords

Neutron Energy Neutron Spectrum Acoustic Mode Torsional Mode Isotactic Polypropylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

F. Bibliography

  1. 1.
    Boutin, H., H. Prask, S. F. Trevino, and H. Danner: Study of the low-frequency molecular motions in polyethylene and the n-paraffins by slow neutron inelastic scattering. Proceedings of Symposium on Inelastic Scattering of Neutrons, Bombay, Dec. 1964, Vol II, 407–419 pp. I. A. E. A., Vienna, 1965.Google Scholar
  2. 2.
    Brockhouse, B. N.: Phonons and Neutron Scattering. pp. 221–275. In: T. A. Bak, ed.: Phonons and Phonon Interactions. New York: W. A. Benjamin, Inc. 1964.Google Scholar
  3. 3.
    Brugger, R. M.: Mechanical and time of flight techniques. pp. 53–96. In: Egelstaff, P. A., ed.: Thermal Neutron Scattering. New York: Academic Press 1965.Google Scholar
  4. 4.
    Bunn, C. W.: The crystal structure of long-chain normal paraffin hydrocarbons. The “Shape” of the CH2 group. Trans. Faraday Soc. 35, 482–491 (1939).CrossRefGoogle Scholar
  5. 5.
    Cannon, C. G.: The infra-red spectra and molecular configurations of polyamides. Spectrochim. Acta 16, 302–319 (1960).CrossRefGoogle Scholar
  6. 6.
    Clark, E. S., and L. T. Muus: The relationship between bragg reflections and disorder in crystalline polymers. Z. Krist. 117, 108–118 (1962).CrossRefGoogle Scholar
  7. 7.
    Danner, H. R., G. J. Safford, H. Boutin, and M. Berger: Study of low-frequency motions in polyethylene and the paraffin hydrocarbons by neutron inelastic scattering. J. Chem. Phys. 40, 1417–1425 (1964).CrossRefGoogle Scholar
  8. 8.
    Enomoto, S., and M. Asahina: Lattice modes of polyethylene. J. Polymer Sci. X, Part A, 2, 3523–3544 (1964).Google Scholar
  9. 9.
    Hathaway, C. E., and J. R. Nielsen: Raman spectrum of polytetrafluoroethylene. J. Chem. Phys. 41, 2203–2204 (1964).CrossRefGoogle Scholar
  10. 10.
    Hughes, D. J., and R. B. Schwartz: Neutron cross sections. 2nd Edition, 376pp., BNL-325, Brookhaven National Laboratory, Upton, New York, 1958.Google Scholar
  11. 11.
    Iyengar, P. K.: Crystal diffraction techniques. pp. 97–140. In: Egelstaff, P. A., ed.: Thermal Neutron Scattering. New York: Academic Press 1965.Google Scholar
  12. 12.
    Kirkwood, J. G.: The skeletal modes of vibration of long chain molecules. J. Chem. Phys. 7, 506–509 (1939).CrossRefGoogle Scholar
  13. 13.
    Kitagawa, T., and T. Miyazawa: Frequency distribution of crystal vibrations and specific heat of polyethylene. Rep. Progr. Polymer Phys. Jap. 8, 53–56 (1965).Google Scholar
  14. 14.
    Kothari, L. S., and K. S. Singwi: Interaction of thermal neutrons with solids. Solid State Phys. 8, 109–190 (1959).CrossRefGoogle Scholar
  15. 15.
    Liang, C. Y., and S. Krimm: Infrared spectra of high polymers III. Polytetrafluoroethylene and Polychlorotrifluoroethylene. J. Chem. Phys. 25, 563–571 (1956).CrossRefGoogle Scholar
  16. 16.
    Matsubara, I., Y. Itoh, and M. Shinomiya: Lower-frequency infrared spectra (800-200 cm−1) and structures of polyamides. J. Polymer Sci. Polymer Letters 4, 47–53 (1966).CrossRefGoogle Scholar
  17. 17.
    Matsuda, H., K. Okada, T. Takase, and T. Yamamoto: Theory of normal vibrations of chain molecules with finite length. J. Chem. Phys. 41, 1527–1541 (1964).CrossRefGoogle Scholar
  18. 18.
    Miyazawa, T.: Perturbation treatment of the characteristic vibrations of polypeptide chains in various configurations. J. Chem. Phys. 32, 1647–1652 (1960).CrossRefGoogle Scholar
  19. 19.
    — Y. Ideguchi, and K. Fukushima: Molecular vibrations of high polymers. IV. A general method of treating degenerate normal vibrations of helical polymers and infrared active vibrations of isotactic polypropylene. J. Chem. Phys. 38, 2709–2720 (1963).CrossRefGoogle Scholar
  20. 20.
    —, and T. Kitagawa: Crystal vibrations, specific heat, and elastic moduli of the polyethylene crystal. J. Polymer Sci. Polymer Letters 2, 395–397 (1964).CrossRefGoogle Scholar
  21. 21.
    Myers, W., J. L. Donovan, and J. S. King: Polyethylene frequency spectrum from “warm”-neutron scattering. J. Chem. Phys. 42, 4299–4300 (1966).CrossRefGoogle Scholar
  22. 22.
    — G. C. Summerfield, and J. S. King: Neutron scattering in stretch-oriented polyethylene. J. Chem. Phys. 44, 184–187 (1965).CrossRefGoogle Scholar
  23. 23.
    Nelkin, M.: Slow-neutron inelastic scattering and neutron thermalization. Proceedings of Symposium on Inelastic Scattering of Neutrons, Vienna, 1960, 3–24, IAEA, Vienna, 1961.Google Scholar
  24. 24.
    Pines, D.: Elementary Excitation in Solids. New York: W. A. Benjamin 1963.Google Scholar
  25. 25.
    Safford, G. J., H. R. Danner, H. Boutin, and M. Berger: Investigation of the low-frequency motions in isotactic and atactic polypropylene. J. Chem. Phys. 40, 1426–1432 (1964).CrossRefGoogle Scholar
  26. 26.
    —, and F. J. Losacco: Study of low-frequency motions in Nylon-6. J. Chem. Phys. 43, 3404–3405 (1965).CrossRefGoogle Scholar
  27. 27.
    —, and A. W. Naumann: A neutron inelastic scattering-investigation of the low frequency motions of polytetrafluoroethylene. To be submitted to the J. Chem. Phys.Google Scholar
  28. 28.
    — —, and F. T. Simon: A neutron scattering study of the intramolecular and crystalline modes of polyethylene. Submitted for publication to the J. Chem. Phys.Google Scholar
  29. 29.
    Saito, N., K. Okano, S. Iwayanagi, and T. Hideshima: Molecular motion in solid state polymers. Solid State Phys. 14, 343–502 (1963).CrossRefGoogle Scholar
  30. 30.
    Schachtschneider, J. H., and R. G. Snyder: Vibrational analysis of n-paraffins. II. Normal coordinate calculations. Spectrochim. Acta 19, 117–168 (1963).CrossRefGoogle Scholar
  31. 31.
    — —Normal coordinate calculations of large hydrocarbon molecules and polymers. J. Polymer Sci. Part C 7, 99–124 (1964).CrossRefGoogle Scholar
  32. 32.
    Snyder, R. G.: Vibrational spectra of crystalline n-paraffins. Part I, methylene rocking and wagging modes. J. Mol. Spectroscopy 4, 411–434 (1960).CrossRefGoogle Scholar
  33. 33.
    Vibrational spectra of crystalline n-paraffins. II. Inter-molecular effects. J. Mol. Spectroscopy 7, 116–144 (1961).CrossRefGoogle Scholar
  34. 34.
    Summerfield, G. C.: Determination of the phonon spectrum of polyethylene by neutron scattering. J. Chem. Phys. 43, 1079–1080 (1965).CrossRefGoogle Scholar
  35. 35.
    Tasumi, M., and T. Shimanouchi: Crystal vibrations and intermolecular forces of polymethylene crystals. J. Chem. Phys. 43, 1245–1258 (1965).CrossRefGoogle Scholar
  36. 36.
    — —, and T. Miyazawa: Normal vibrations and force constants of polymethylene chain. J. Mol. Spectroscopy 9, 261–287 (1962).CrossRefGoogle Scholar
  37. 37.
    Tobin, M. C., and M. J. Carrano: Infrared spectra of polymers. I. Effect of crystallinity on the infrared spectrum of polyethylene and on the infrared spectra of Nylon-6 and Nylon-11. J. Chem. Phys. 25, 1044–1052 (1956).CrossRefGoogle Scholar
  38. 38.
    Wannier, G. H.: Elements of solid state theory. Cambridge: Cambridge University Press 1959.Google Scholar
  39. 39.
    Wunderlich, B.: Motion in polyethylene. II. Vibrations in crystalline polyethylene. J. Chem. Phys. 37, 1207–1216 (1962).CrossRefGoogle Scholar
  40. 40.
    Motion in polyethylene. I. Temperature and crystallinity dependence of the specific heat. J. Chem. Phys. 37, 1203–1207 (1962).CrossRefGoogle Scholar
  41. 41.
    Zemlyanov, M. G., and N. A. Chernoplekov: Investigation of inelastic scattering of cold neutrons by certain hydrogen-containing substances. BNL 719 C-32. Proceedings of the Brookhaven Conference on Neutron Thermalization, Vol I, p. 66 (1962).Google Scholar
  42. 42.
    — Comment, Proceedings of Symposium on Inelastic Scattering of Neutrons, Bombay, Dec. 1964. Vol. II, 419, I.A.E.A. Vienna, 1965.Google Scholar

Copyright information

© Springer-Verlag 1967

Authors and Affiliations

  • G. J. Safford
    • 1
  • A. W. Naumann
    • 1
  1. 1.Union Carbide CorporationSterling Forest Research CenterTuxedoUSA

Personalised recommendations