Advertisement

Structure and elasticity of non-crystalline polymer networks

  • K. Dušek
  • W. Prins
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 6/1)

Keywords

Natural Rubber Network Chain Crosslinking Density Primary Chain Exclude Volume Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

VII. References

  1. 1.
    Aldersley, J. W., and M. Gordon: Polyaddition and polycondensation-substitution effects in polycondensation systems. IUPAC Symposium on Macromolecular Chemistry, Prague 1965. Preprint p. 584.Google Scholar
  2. 2.
    Alexander, P., and A. Charlesby: Effect of X-rays on synthetic polymers in aqueous solution. J. Polymer Sci 23, 355 (1957).CrossRefGoogle Scholar
  3. 3.
    Alfrey, T., J. J. Bohrer, and H. Mark: Copolymerization, Chap. 9. New York: Interscience 1952.Google Scholar
  4. 4.
    —, and W. G. Lloyd: Network polymers. I. Theoretical remarks. J. Polymer Sci. 62, 159 (1962); see also Mazur, J., and T. Alfrey: Proc. Intern. Rubber Conf., Washington D. C. 1959, p. 378.CrossRefGoogle Scholar
  5. 5.
    Allen, G., U. Bianchi, and C. Price: Thermodynamics of elasticity of natural rubber. Trans. Faraday Soc. 59, 2493 (1963).CrossRefGoogle Scholar
  6. 6.
    —, G. Gee, M. C. Kirkham, C. Price, and J. Padget: A study of the elastic deformation of butyl rubber at constant volume. International Symposium on Macromolecular Chemistry, Tokyo 1966. Vol. 8, p. 1, Preprint 1.4.02.Google Scholar
  7. 7.
    — —, D. Mangaraj, D. Sims, and G. J. Wilson: Intermolecular forces and chain flexibilities in polymers. II. Internal Pressures of Polymers. Polymer 1, 467 (1960).CrossRefGoogle Scholar
  8. 8.
    Andrews, R. D., A. V. Tobolsky, and E. E. Hanson: Theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanisates. J. Appl. Phys. 17, 352 (1946).CrossRefGoogle Scholar
  9. 9.
    Barshaw, J., and K. J. Smith: Thermoelasticity of networks in swelling equilibrium. J. Polymer Sci., Pt. A-2, 6, 1041 (1968)Google Scholar
  10. 10.
    Bekkedahl, N., and L. A. Wood: Crystallization of vulcanized rubber. Ind. Eng. Chem. 33, 381 (1941).CrossRefGoogle Scholar
  11. 11.
    Berkowich, J., A. Charlesby, and V. Desreux: Radiation effects on aqueous solutions of poly (vinyl alcohol). J. Polymer Sci. 25, 490 (1957).CrossRefGoogle Scholar
  12. 12.
    Bianchi, U., and E. Pedemonte: Rubber elasticity: Thermodynamic properties of deformed networks. J. Polymer Sci. Pt A-2, 5039 (1964).Google Scholar
  13. 13.
    Blanchard, A. F., and P. M. Wootton: Entanglements and other steric effects in crosslinked polymers. J. Polymer Sci. 34, 627 (1959).CrossRefGoogle Scholar
  14. 14.
    Blokland, R.: Elasticity and structure of polyurethane networks. Rotterdam: Universitaire Pers 1968.Google Scholar
  15. 15.
    Bobear, W. J.: Chain density in rubber networks. Rubber Chem. Technol. 40, 1560 (1967).Google Scholar
  16. 16.
    Booth, C., G. Gee, M. N. Jones, and W. D. Taylor: Studies in the thermodynamics of polymer-liquid systems. II. A reassessment of published data. Polymer 5, 353 (1964).Google Scholar
  17. 17.
    Borchard, W.: Quellungsdruckmessungen an Polystyrolgelen, Ph. D. Thesis, T. H. Aachen 1966.Google Scholar
  18. 18.
    Boyer, R. F.: Deswelling of gels by high polymer solution. J. Chem. Phys. 13, 363 (1945).CrossRefGoogle Scholar
  19. 19.
    Bruneau, C. M.: Théorie de graphes stochastiques appliquée à la synthèse et à la dégradation aléatoires des composés macromoléculaires multifonctionnels. Thesis, University of Paris 1966.Google Scholar
  20. 20.
    Description statistique de graphes aléatoires pouvant servir de modelle a des processus de “polyagrégation”. R.F.T.I.-Chiffres 9, 201 (1966).Google Scholar
  21. 21.
    Sur l'interprétation de la valeur infinie des degrés de polymerisation selon la théorie classique. Proposition d'un formalisme nouveau établi sur des bases topologiques et pour des systèmes macromoléculaires finis. Compt. Rend. C 264, 758 (1967).Google Scholar
  22. 22.
    Bruneau, C. M.: Sur une inconséquence formelle déduite du concept de gélification des composés macromoléculaires multifonctionnels selon la théorie classique. Nouvelle interprétation du phenomène de gélification. Compt. Rend. C 264, 1168 (1967).Google Scholar
  23. 23.
    Bueche, A. M.: An investigation of the theory of rubber elasticity using irradiated polydimethylsiloxanes. J. Polymer Sci. 19, 297 (1956).CrossRefGoogle Scholar
  24. 24.
    Bueche, F.: Physical properties of polymers. New York: Interscience 1962.Google Scholar
  25. 25.
    Cahn, J. W.: Phase separation by spinodial decomposition in isotropic systems. J. Chem. Phys. 42, 93 (1965).CrossRefGoogle Scholar
  26. 26.
    Case, L. C.: Molecular distribution in polycondensation involving unlike reactants. I. Gelation. J. Polymer Sci. 26, 333 (1957).CrossRefGoogle Scholar
  27. 27.
    Molecular distribution in polycondensation involving unlike reactants. II. Linear distributions. J. Polymer Sci. 29, 455 (1958).CrossRefGoogle Scholar
  28. 28.
    Branching in polymers. I. Network defects. J. Polymer Sci. 45, 397 (1960).CrossRefGoogle Scholar
  29. 29.
    Charlesby, A.: Gel formation and molecular weight distribution in long-chain polymers. Proc. Roy. Soc. (London) A 222, 542 (1954).Google Scholar
  30. 30.
    —, and S. H. Pinner: Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc. Roy. Soc. (London) A 249, 367 (1959).Google Scholar
  31. 31.
    Chömpff, A. J.: Linear viscoelasticity of entanglement networks. Thesis, T.H. Delft 1965.Google Scholar
  32. 32.
    —, and J. A. Duiser: Viscoelasticity of networks consisting of crosslinked or entangled macromolecules. I. Normal modes and mechanical spectra. J. Chem. Phys. 45, 1505 (1966).CrossRefGoogle Scholar
  33. 33.
    —, and W. Prins: Viscoelasticity of networks consisting of crosslinked or entangled macromolecules. II. Verification of the theory for entangled networks. J. Chem. Phys. 48, 235 (1968).CrossRefGoogle Scholar
  34. 34.
    Ciferri, A.: Present status of the rubber elasticity theory. J. Polymer Sci. 54, 149 (1961).CrossRefGoogle Scholar
  35. 35.
    —, and J. J. Hermans: Non-equilibrium effect in the stress-strain behaviour of rubber for the explanation of deviations from rubber elasticity theory. J. Polymer Sci. Pt. B-2, 1089 (1964).Google Scholar
  36. 36.
    Ciferri, A., and K. J. Smith: Phase changes in fibrous macromolecular systems and associated elasticity. Model phase diagrams. J. Polymer Sci. Pt. A-2, 731 (1964).Google Scholar
  37. 37.
    Crespi, G., and U. Flisi: Contribution of the internal energy to the retractive force of vulcanized cis-1,4-polybutadiene. Makromol. Chem. 60, 191 (1963).CrossRefGoogle Scholar
  38. 38.
    Dimarzio, E. A.: Contribution to a liquid-like theory of rubber elasticity. J. Chem. Phys. 36, 1563 (1962).CrossRefGoogle Scholar
  39. 39.
    Dobson, G. R., and M. Gordon: Configurational statistics of highly branched polymer systems. J. Chem. Phys. 41, 2389 (1964).CrossRefGoogle Scholar
  40. 40.
    — — Orientational entropy of crosslinks and the Mooney-Rivlin equation. Trans. Inst. Rubber Ind. 40, T262 (1964).Google Scholar
  41. 41.
    Dobson, G. R., and M. Gordon: Theory of branching processes and statistics of rubber elasticity. J. Chem. Phys. 43, 705 (1965); Rubber Chem. Technol. 39, 1472 (1966).CrossRefGoogle Scholar
  42. 42.
    Donkersloot, M. C. A., J. H. Gouda, J. J. van Aartsen, and W. Prins: Polymer gel structure elucidation by means of light scattering and photo-elasticity. Rec. Trav. Chim. Pays-Bas 86, 321 (1967).Google Scholar
  43. 43.
    Duiser, J. A., and A. J. Staverman: On the theory of rubber elasticity. In: Physics of non-crystalline solids (J. A. Prins, Ed.); p. 376. Amsterdam: North-Holland Publ. Co. 1965.Google Scholar
  44. 44.
    Dušek, K.: The heterogeneity and extent of intramolecular crosslinking in a system of Gaussian coils. Collection Czech. Chem. Commun. 33, 1100 (1968).Google Scholar
  45. 45.
    The formation of a three-dimensional network in the copolymerization of styrene and divinylbenzene. Collection Czech. Chem. Commun. 32, 1182 (1967).Google Scholar
  46. 46.
    Thermoelasticity of swollen styrene-divinylbenzene copolymers. Collection Czech. Chem. Commun. 32, 2264 (1967).Google Scholar
  47. 47.
    Structural parameters of crosslinked polystyrene determined from tension-deformation dependence and swelling in solvents of different activity. Collection Czech. Chem. Commun. 32, 1554 (1967).Google Scholar
  48. 48.
    Ionenaustauschergerüste III. Kopolymere des Styrols mit Divinylbenzol. Elastisches Verhalten der in Toluol gequollenen Kopolymeren. Collection Czech. Chem. Commun. 27, 2841 (1962).Google Scholar
  49. 49.
    — Phase separation during formation of three-dimensional networks. J. Polymer Sci. Pt. C-16, 1289 (1967).Google Scholar
  50. 50.
    —, and D. Patterson: Transition in swollen polymer networks induced by intramolecular condensation. J. Polymer Sci. Pt. A-2, 6, 1209 (1968).CrossRefGoogle Scholar
  51. 51.
    —, and B. Sedláček: Structure and properties of hydrophylic polymers and their gels. Microsyneresis in poly (ethylene glycol methacrylate) gels induced by a temperature change. Collection Czech. Chem. Commun. (in press).Google Scholar
  52. 52.
    Edwards, S. F.: Statistical mechanics of polymers with excluded volume. Proc. Phys. Soc. (London) 85, 613 (1965).CrossRefGoogle Scholar
  53. 53.
    Elias, H. G., u. R. Bareiss: Association von Makromolekülen. Chimia 21, 53 (1967).Google Scholar
  54. 54.
    Ferry, J. D.: Viscoelastic properties of polymers. New York: Wiley 1961.Google Scholar
  55. 55.
    Flory, P.J.: Principles of polymer chemistry. Ithaca: Oxford Univ. Press 1953.Google Scholar
  56. 56.
    Principles of condensation polymerization. Chem. Rev. 39, 137 (1946).CrossRefGoogle Scholar
  57. 57.
    Theory of elastic mechanism in fibrous proteins. J. Am. Chem. Soc. 78, 5222 (1956).CrossRefGoogle Scholar
  58. 58.
    Statistical mechanics of swelling of network structures. J. Chem. Phys. 18, 108 (1950).CrossRefGoogle Scholar
  59. 59.
    Funke, W.: Über die Strukturaufklärung vernetzter Makromoleküle, insbesondere vernetzter Polyesterharze, mit chemischen Methoden. Advan. Polymer Sci. 4, 157 (1965).CrossRefGoogle Scholar
  60. 60.
    Gallacher, L., and F. A. Bettelheim: Light-scattering studies of crosslinking unsaturated polyesters with methyl acrylate. J. Polymer Sci. 58, 697 (1962).CrossRefGoogle Scholar
  61. 61.
    Gee, G., and W. J. C. Orr: The interaction between rubber and liquids. VIII. A new examination of the thermodynamic properties of the system rubber + benzene. Trans. Faraday Soc. 42, 507 (1946).CrossRefGoogle Scholar
  62. 62.
    The present status of the theory of rubber elasticity. Polymer 7, 373 (1966).CrossRefGoogle Scholar
  63. 63.
    The interaction between rubber and liquids. IX. The elastic behaviour of dry and swollen rubbers. Trans. Faraday Soc. 42, 585 (1946).CrossRefGoogle Scholar
  64. 64.
    Gee, G., J. B. M. Herbert, and R. C. Roberts: The vapour pressure of a swollen crosslinked elastomer. Polymer 6, 541 (1965).CrossRefGoogle Scholar
  65. 65.
    Gent, A. N., and V. V. Vickroy: Elastic behaviour, birefringence, and swelling of amorphous polyethylene networks. J. Polymer Sci. Pt. A-2, 47 (1967).Google Scholar
  66. 66.
    Gordon, M.: Good's theory of cascade processes and molecular weight averages of the sol fraction. Proc. Roy. Soc. (London) A 272, 54 (1963).Google Scholar
  67. 67.
    Configurational statistics of copolymer systems. Proc. Roy. Soc. (London) A 295, 29 (1966).Google Scholar
  68. 68.
    Polycondensation, récents progrès théoretiques et pratiques. Plastiques 4, (2), 111 (1967).Google Scholar
  69. 69.
    Gordon, M.: Private communication.Google Scholar
  70. 70.
    —, and R.-J. Roe: Diffusion and gelation in poly-addition. I. Vindication of the classical network theory of gelation. J. Polymer Sci. 21, 27 (1956).CrossRefGoogle Scholar
  71. 71.
    —, and G. R. Scantlebury: Non-random polycondensation: Statistical theory of the substitution effect. Trans. Faraday Soc. 60, 604 (1964).CrossRefGoogle Scholar
  72. 72.
    — —Theory of ring chain equilibria in branched non-random polycondensation systems, with application to POCl 3/P2O5. Proc. Roy. Soc. (London) A 292, 380 (1966).Google Scholar
  73. 73.
    — — Statistical kinetics of polyesterification of adipic acid with pentaerythritol and trimethylolethane. J. Chem. Soc. 1967, 1.Google Scholar
  74. 74.
    — — The theory of branching processes and kinetically controlled ring-chain equilibria. IUPAC Symposium on Macromolecular Chemistry, Prague 1965. Preprint P 513.Google Scholar
  75. 75.
    Greene, A., and A. Ciferri: Elastic properties of networks formed from oriented chain molecules of fibrous natural rubber. Kolloid-Z. 186, 1 (1962).CrossRefGoogle Scholar
  76. 76.
    Guth, E.: Statistical mechanics of polymers. J. Polymer Sci. Pt. C, 12, 89 (1966).Google Scholar
  77. 77.
    Halpin, J. C.: The nonlinear response and rupture of lightly crosslinked elastomers. J. Polymer Sci. Pt. C, 16, 1037 (1967).Google Scholar
  78. 78.
    Harris, T. E.: Theory of branching processes. Berlin-Göttingen-Heidelberg: Springer, 1963.Google Scholar
  79. 79.
    Hasa, J., and J. Janáček: Effect of diluent content during polymerization on equilibrium deformational and structural parameters of polymer networks. J. Polymer Sci. Pt. C, 16, 317 (1967).Google Scholar
  80. 80.
    Haward, R. N., and W. Simpson: Intramolecular reaction in the styrene-divinylbenzene system. J. Polymer Sci. 18, 440 (1955).CrossRefGoogle Scholar
  81. 81.
    Henglein, A.: Crosslinking of polymers in solution under the influence of γ-radiation. J. Phys. Chem. 63, 1852 (1959).CrossRefGoogle Scholar
  82. 82.
    Hermans, J. J.: Deformation and swelling of polymer networks containing comparatively long chains. Trans. Faraday Soc. 43, 591 (1947).CrossRefGoogle Scholar
  83. 83.
    Statistical thermodynamics of swollen polymer networks. J. Polymer Sci. 59, 191 (1962).CrossRefGoogle Scholar
  84. 84.
    The behaviour of rubber-like material when stretched. J. Colloid Sci. 1, 235 (1946).CrossRefGoogle Scholar
  85. 85.
    Hill, T. L.: An introduction to statistical thermodynamics, Chap. 13. Reading: Addison-Wesley 1960.Google Scholar
  86. 86.
    Hoeve, C. A. J., A. Ciferri, and P. J. Flory: Elasticity of crosslinked amorphous polymers in swelling equilibrium with diluents. J. Polymer Sci. 45, 235 (1960).CrossRefGoogle Scholar
  87. 87.
    —, and P. J. Flory: Elasticity of crosslinked amorphous polymers in swelling equilibrium with diluents. J. Polymer Sci. 60, 155 (1962).CrossRefGoogle Scholar
  88. 88.
    Hoeve, C. A. J.., and A. Ciferri: Limitations of the application to semicrystalline fibers of thermoelastic relations for high elastic materials: A reply to W. Prins. J. Polymer Sci. 60, 68 (1962).CrossRefGoogle Scholar
  89. 89.
    —, and M. K. O'Brien: Specific diluent effects on polymer chain dimensions. J. Polymer Sci. Pt. A, 1, 1947 (1963).CrossRefGoogle Scholar
  90. 90.
    Holt, T., and W. Simpson: Observation on intramolecular reaction in addition polymerization systems. Proc. Roy. Soc. (London), A 238, 154 (1956).Google Scholar
  91. 91.
    Horn, P.: Ph. D. Thesis, Strasbourg 1955.Google Scholar
  92. 92.
    Howard, G. J.: The molecular weight distribution of condensation polymers. In: Progress in high polymers. (J. C. Robb and F. W. Peaker, Ed.), p. 185. London: Heywood 1961.Google Scholar
  93. 93.
    Hulst, H. C. van de: Light scattering by small particles. New York: Jon Wiley and Sons 1964; see also Heller, W.: Proc. interdisciplinary conference on electromagnetic scattering (M. Kerker, Ed.), p. 101. Oxford: Pergamon Press 1963.Google Scholar
  94. 94.
    Jackson, J. F., and S. J. Gill: Elastic properties of crosslinked poly (vinyl alcohol) gels. Network topology. J. Polymer Sci. Pt. A-2, 5, 663 (1967).CrossRefGoogle Scholar
  95. 95.
    Jackson, J. L., M. C. Shen, and D. A. McQuarrie: Intermolecular obstruction in rubber elasticity theory. J. Chem. Phys. 44, 2388 (1966).CrossRefGoogle Scholar
  96. 96.
    Jacobson, H., and W. H. Stockmayer: Intermolecular reaction in polycondensation. I. Theory of linear systems. J. Chem. Phys. 18, 1600 (1950).CrossRefGoogle Scholar
  97. 97.
    James, H. M.: Statistical properties of networks of flexible chains. J. Chem. Phys. 15, 651 (1947).CrossRefGoogle Scholar
  98. 98.
    —, and E. Guth: Theory of the increase in rigidity of rubber during cure. J. Chem. Phys. 15, 669 (1947).CrossRefGoogle Scholar
  99. 99.
    — —Statistical thermodynamics of rubber elasticity. J. Chem. Phys. 21, 1039 (1953).CrossRefGoogle Scholar
  100. 100.
    Kargin, V. A., Z. Ya. Berestneva, and V. G. Kalashnikova: Supermolecular structures in rubber. Uspekhi Khim. 36, 203 (1967).Google Scholar
  101. 101.
    Khasanovich, T. N.: The role of volume effects in the theory of deformation of network polymers. Zh. Tekhn. Fiz. 28, 1437 (1958).Google Scholar
  102. 102.
    The excluded volume in the theory of deformation of swollen network polymers. Vysokomolekul. Soedin. 1, 1659 (1959).Google Scholar
  103. 103.
    Kilb, R. W.: Dilute gelling systems. I. The effect of ring formation on gelation. J. Phys. Chem. 62, 969 (1958).CrossRefGoogle Scholar
  104. 104.
    Knibbe, D. E.: Diffusion-controlled stress relaxation of swollen rubberlike networks. Rotterdam: University Press 1968.Google Scholar
  105. 105.
    Kraats, E. J. van de, M. A. M. Winkeler, J. M. Potters, and W. Prins: Polymer network characterization by means of swelling pressure and unilateral compression data. Rec. Trav. Chim. Pays-Bas (in press).Google Scholar
  106. 106.
    — On elasticity and swelling. Ph. D. Thesis, TH Delft 1967.Google Scholar
  107. 107.
    Kraus, G.: Quantitative characterization of polybutadiene networks. J. Appl. Polymer Sci. 7, 1257 (1963).CrossRefGoogle Scholar
  108. 108.
    —, and G. A. Moczygemba: Chain entanglements and elastic behaviour of polybutadiene networks. J. Polymer Sci., Pt. A, 2, 277 (1964).CrossRefGoogle Scholar
  109. 109.
    Krigbaum, W. R., and D. K. Carpenter: Phase-equilibria in polymer-liquid 1-liquid 2-systems. J. Polymer Sci. 14, 241 (1954).CrossRefGoogle Scholar
  110. 110.
    —, and R. W. Godwin: Direct measurement of molecular dimensions in bulk polymers. J. Chem. Phys. 43, 4523 (1965).CrossRefGoogle Scholar
  111. 111.
    —, and M. Kaneko: Cubic lattice model chain. J. Chem. Phys. 36, 99 (1962).CrossRefGoogle Scholar
  112. 112.
    —, and R.-J. Roe: Survey of the theory of rubberlike elasticity. Rubber Chem. Technol. 38, 1039 (1965).Google Scholar
  113. 113.
    Kuhn, W., and G. Balmer: Crosslinking of single linear macromolecules. J. Polymer Sci. 57, 311 (1962).CrossRefGoogle Scholar
  114. 114.
    —, u. F. Grün: Beziehung zwischen elastischen Konstanten und Dehnungs-doppelbrechung hochelastischer Stoffe. Kolloid-Z. 101, 248 (1942).CrossRefGoogle Scholar
  115. 115.
    —, u. H. Mayer: Die Selbstvernetzung von Fadenmolekülen. Makromol. Chem. 18, 239 (1955).CrossRefGoogle Scholar
  116. 116.
    Kvasnikov, I. A.: The application of Ising's model in the statistical theory of high elasticity. Vysokomolekul. Soedin. 3, 1617 (1961).Google Scholar
  117. 117.
    Kwei, T. K.: Swelling of highly crosslinked network structures. J. Polymer Sci., Pt. A 1, 2977 (1963).Google Scholar
  118. 118.
    Liquori, A. M., G. Anzuino, V. M. Coiro, M. D'Alagni, P. DeSantis, and M. Sarino: Complementary stereospecific interaction between isotactic and syndiotactic polymer molecules. Nature 206, 358 (1965).Google Scholar
  119. 119.
    Manfee, E., and W. L. Peticolas: Polymers and the theory of numbers: Molecular weight distribution from rheological measurements. Nature 189, 745 (1961).Google Scholar
  120. 120.
    Mayo, F. R., and F. M. Lewis: Copolymerization. I. A basis for comparing the behaviour of monomers in copolymerization: the copolymerization of styrene and methyl methacrylate. J. Am. Chem. Soc. 66, 1594 (1944).CrossRefGoogle Scholar
  121. 121.
    Meissner, B.: Structure and network chain concentration of rubber. IUPAC Symposium on Macromolecular Chemistry, Prague 1965, Preprint 100.Google Scholar
  122. 122.
    — Stress-strain properties and structure of poly (dimethylsiloxane) networks. Microsymposium on macromolecules: Polymer gels and concentrated solutions. Inst. of Macromolecular Chemistry, Prague 1967, E6.Google Scholar
  123. 123.
    Mijnlieff, P. F., and W. J. M. Jaspers: Thermodynamics of swelling of polymer-network gels. Analysis of excluded volume effects in polymer solutions and polymer networks. J. Polymer Sci. A-2 (in press).Google Scholar
  124. 124.
    Minnema, L., and A. J. Staverman: The validity of the theory of gelation in vinyl-divinyl copolymerization. J. Polymer Sci. 29, 281 (1958).CrossRefGoogle Scholar
  125. 125.
    Moore, W. R., and R. Shuttleworth: Thermodynamic properties of solutions of cellulose acetate and cellulose nitrate. J. Polymer Sci., Pt. A. 1, 733 (1963).Google Scholar
  126. 126.
    Mukherji, B., and W. Prins: Applicability of polymer network theories to gels obtained by crosslinking a polymer in solution. J. Polymer Sci., Pt. A 2, 4367 (1964).CrossRefGoogle Scholar
  127. 127.
    Mullins, L.: Determination of degree of crosslinking in natural rubber vulcanizates. I. J. Polymer Sci. 19, 225 (1956).CrossRefGoogle Scholar
  128. 128.
    Determination of degree of crosslinking in natural rubber vulcanizates. IV. Stress-strain behaviour at large extensions. J. Appl. Pol. Sci. 2, 257 (1959).CrossRefGoogle Scholar
  129. 129.
    —, and A. G. Thomas: Determination of degree of crosslinking in natural rubber vulcanizates. V. Effect of network flaws due to free chain ends. J. Polymer Sci. 43, 13 (1960).CrossRefGoogle Scholar
  130. 130.
    — —Theory of rubberlike elasticity. In: The chemistry and physics of rubberlike substances (L. Bateman, Ed.), p. 155. London: McLaren 1963.Google Scholar
  131. 131.
    Nanda, V. S., and R. K. Pathria: Polymers and theory of numbers I. The single-chain theory of degradation. J. Chem. Phys. 30, 27 (1959).CrossRefGoogle Scholar
  132. 132.
    Opschoor, A., and W. Prins: Thermoelasticity and conformational behaviour of polyethylene and ethylene-propylene copolymers. J. Polymer Sci., Pt. C 16, 1095 (1967).Google Scholar
  133. 133.
    Palmen, H. J.: Diplomarbeit, TH Aachen 1960.Google Scholar
  134. 134.
    Picot, C.: Etude de la diffusion de la lumière par des disques anisotropes. Ph. D. Thesis, Strasbourg, 1968.Google Scholar
  135. 135.
    Price, F. P.: Dilute gelling systems. III. Polyalkoxysilanes. J. Phys. Chem. 62, 977 (1958).CrossRefGoogle Scholar
  136. 136.
    —, J. H. Gibbs, and B. H. Zimm: Dilute gelling systems. II. Polyesters. J. Phys. Chem. 62, 972 (1958).CrossRefGoogle Scholar
  137. 137.
    Prins, W.: Elastic deformation of amorphous and swollen polymer networks. In: Physics of non-crystalline solids (J. A. Prins, Ed.), p. 360. Amsterdam: North-Holland Publ. Co. 1965.Google Scholar
  138. 138.
    Priss, L. S.: Study of the dependence of C1 and C2 constants on time and grosslink density in the unfilled vulcanizates. Macrosymposium on Macromolecules: Polymer Gels and Concentrated Solutions, Inst. of Macromolecular Chemistry, Prague 1967, E 1.Google Scholar
  139. 139.
    Ptitsyn, O. B., A. K. Kron, and Yu. E. Eizner: The models of the denaturation of globular proteins. I. Theory of globule-coil transitions in macromolecules. IUPAC Symposium on Macromolecular Chemistry, Prague 1965, Preprint 474.Google Scholar
  140. 140.
    Rehage, G.: Zur Thermodynamik der Quellung I, II, III. Kolloid-Z. Z. Polymere 194, 16 (1964); 196, 17 (1964); 199, 1 (1964).CrossRefGoogle Scholar
  141. 141.
    Rivlin, R. S.: In: Rheology (F. R. Eirich, Ed.). Vol. 1, Chap. 10. New York: Academic Press 1956.Google Scholar
  142. 142.
    —, and D. W. Saunders: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. A 243, 251 (1951).Google Scholar
  143. 143.
    Roberts, D. E., and L. Mandelkern: Some properties of polymer networks formed from oriented chains of natural rubber. J. Am. Chem. Soc. 80, 1289 (1958).CrossRefGoogle Scholar
  144. 144.
    Robertson, R. E.: Polymer order and polymer density. J. Phys. Chem. 69, 1575 (1965).Google Scholar
  145. 145.
    Roe, R. J., and W. R. Krigbaum: The contribution of energy to the elastic force of natural rubber. J. Polymer Sci. 61, 167 (1962).CrossRefGoogle Scholar
  146. 146.
    — —A thermodynamics study of viton elastomer. J. Polymer Sci., Pt. A 1, 2049 (1963).Google Scholar
  147. 147.
    Rijke, A. M.: Crosslinking in solution. Studies on cellulose acetate networks. Ph. D. Thesis, University Leiden 1961.Google Scholar
  148. 148.
    Excluded volume effects in swollen polymeric networks. J. Polymer Sci., Pt. A, 3, 3523 (1965).Google Scholar
  149. 149.
    —, and W. Prins: The swelling of cellulose acetate networks obtained by crosslinking in solution. J. Polymer Sci. 59, 171 (1962).CrossRefGoogle Scholar
  150. 150.
    —, and G. L. Taylor: Stress-strain behaviour of swollen polymeric networks. J. Polymer Sci., Pt. A-1, 5, 1433 (1967).Google Scholar
  151. 151.
    Ryser, H. J.: Combinatorial mathematics. New York: J. Wiley 1965.Google Scholar
  152. 152.
    Sadron, C.: Les polymères organisés. Pure Appl. Chem. 4, 347 (1962).CrossRefGoogle Scholar
  153. 153.
    Ungleichmäßig lösliche Makromoleküle-Heterogele und Heteropolymere. Angew. Chem. 75, 472 (1963).Google Scholar
  154. 154.
    Sadron, C.: Les copolymères organisés. Chim. Ind. 96, 507 (1966).Google Scholar
  155. 155.
    Scanlan, J.: Effect of network flaws on the elastic properties of vulcanizates. J. Polymer Sci. 43, 501 (1960).CrossRefGoogle Scholar
  156. 156.
    Sedláček, B.: Structure and properties of hydrophylic polymers and their gels. VII. Turbidity changes of polymeric gels poly (ethylene glycol methacrylate)-glycol-water. Collection Czech. Chem. Commun. 32, 1398 (1967).Google Scholar
  157. 157.
    Seidl, J., J. Malinský, K. Dušek, u. W. Heitz: Makroporöse Styrol-Divinylbenzol-Copolymere und ihre Anwendung in der Chromatographie und zur Darstellung von Ionenaustauschern. Advanc. Polymer Sci. 5, 113 (1967).Google Scholar
  158. 158.
    Shen, M. C., D. A. McQuarrie, and J. L. Jackson: Thermoelastic behaviour of natural rubber. J. Appl. Phys. 38, 791 (1967).CrossRefGoogle Scholar
  159. 159.
    Smith, K. J., A. Ciferri, and J. J. Hermans: Anisotropic elasticity of composite molecular networks formed from non-Gaussian chains. J. Polymer Sci., Pt. A, 2, 1025 (1964).CrossRefGoogle Scholar
  160. 160.
    Smith, T.L.: Large deformation tensile properties of elastomers. I. Temperature dependence of C1 and C2 in the Mooney-Rivlin equation. J. Polymer Sci., Pt. C 16, 841 (1967).Google Scholar
  161. 161a.
    Spit, B. J.: Gas discharge etching as a new approach in electron microscopy research into high polymers. Polymer 4, 109 (1963).CrossRefGoogle Scholar
  162. 161.
    Solomon, D. H.: A reassessment of the theory of polyesterification with particular reference to alkyd resins. J. Makromol. Sci., Pt. C, 1, 179 (1967).CrossRefGoogle Scholar
  163. 162.
    Sperling, L. H., and A. V. Tobolsky: Thermoelastic properties of poly (dimethyl siloxane) and poly (ethyl acrylate) as a function of temperature. J. Makromol. Sci. 1, 799 (1966).Google Scholar
  164. 163.
    Staverman, A. J.: Thermodynamics of polymers. In: Encyclopedia of physics (S. Flügge, Ed.) Vol. 13. Berlin-Göttingen-Heidelberg: Springer 1962.Google Scholar
  165. 164.
    Stockmayer, W. H.: Molecular size distribution in high polymers. In: Advancing fronts in chemistry I, p. 47. New York: Reinhold 1945.Google Scholar
  166. 165.
    —, and M. Fixman: On the estimation of unperturbed dimensions from intrinsic viscosities. J. Polymer Sci., Pt. C, 1, 137 (1963).Google Scholar
  167. 166.
    Thirion, P., et R. Chasset: Sur une relation empirique entre le déploiement des chaines de réseaux macromoleculaires et les déformations macroscopiques. Loi de comportement élastique à l'état sec. Compt. Rend. C 264, 958 (1967).Google Scholar
  168. 167.
    — —Relaxation viscoélastique des vulcanisats de cautchouch en extension. Chim. Ind., Génie Chim. 97, 617 (1967).Google Scholar
  169. 168.
    Tobolsky, A. V.: Ph. D. Thesis, Princeton University 1944.Google Scholar
  170. 169.
    —, D. W. Carlson, and N. Indictor: Rubber elasticity and chain configuration. J. Polymer Sci. 54, 175 (1961).CrossRefGoogle Scholar
  171. 170.
    —, D. L. Metz, and R. B. Mesrobian: Low temperature autoxidation of hydrocarbons: the phenomenon of maximum rates. J. Am. Chem. Soc. 72, 1942 (1950).CrossRefGoogle Scholar
  172. 171.
    Treloar, L.R.G.: The physics of rubber elasticity. Oxford: Clarendon Press 1958.Google Scholar
  173. 172.
    Van der Hoff, B. M. E., and E. J. Buckler: Transient changes in topology and energy on extension of polybutadiene networks. J. Macromol. Sci. (Chem.) A 1 (4), 747 (1967).Google Scholar
  174. 173.
    Volkenstein, M. V.: Configurational statistics of polymer chains. New York: Interscience 1963.Google Scholar
  175. 174.
    —, Yu. Ya. Gotlib, and O. B. Ptitsyn: Theory of high elasticity of rubbers. Vysokomolekul. Soedin. 1, 1056 (1959).Google Scholar
  176. 175.
    Wall, F. T.: Statistical thermodynamics of rubber. III. J. Chem. Phys. 11, 527 (1943).CrossRefGoogle Scholar
  177. 176.
    —, and P. J. Flory: Statistical theory of rubber elasticity. J. Chem. Phys. 19, 1435 (1951).CrossRefGoogle Scholar
  178. 177.
    Walling, C.: Gel formation in addition polymerization. J. Am. Chem. Soc. 67, 441 (1945).CrossRefGoogle Scholar
  179. 178.
    Wang, M. C., and E. Guth: Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144 (1952).CrossRefGoogle Scholar
  180. 179.
    Wesslau, H.: Strukturabhängige Ringschluß-Reaktionen bei der vernetzenden Copolymerisation. Makromol. Chem. 93, 55 (1966).CrossRefGoogle Scholar
  181. 180.
    Whittle, P.: Statistical processes of aggregation and polymerization. Proc. Cambridge Phil. Soc. 61, 475 (1965).CrossRefGoogle Scholar
  182. 181.
    The equilibrium statistics of a clustering process in the uncondensed phase. Proc. Roy. Soc. (London) 285, 501 (1965).Google Scholar
  183. 182.
    Wesslau, H.: Zur Kenntnis der vernetzenden Copolymerisation. Angew. Makromol. Chem. 1, 56 (1967).CrossRefGoogle Scholar
  184. 183.
    Yamamoto, K., S. Kusamizu, and H. Fujita: Thermoelasticity of rubber vulcanizates. I. Makromol. Chem. 99, 212 (1966).CrossRefGoogle Scholar
  185. 184.
    Zimm, B. H., F. P. Price, and J. P. Bianchi: Dilute gelling systems. IV. Divinylbenzene-styrene copolymers. J. Phys. Chem. 62, 979 (1958).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1969

Authors and Affiliations

  • K. Dušek
    • 1
  • W. Prins
    • 1
  1. 1.Laboratory of Physical ChemistryTechnische Hogeschool DelftThe Netherlands

Personalised recommendations