Advertisement

Schmelzviscositäten hochpolymerer Stoffe

  • V. Semjonow
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 5/3)

Keywords

Molten Polymer Viscometric Property Molten Polystyrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4. Literatur

  1. A1.
    Aggarwal, S. L., L. Marker, and M. J. Caarano: Melt viscosity of polyethylene. J. Appl. Polymer Sci. 3, 77–83 (1960).Google Scholar
  2. A2.
    Alfrey, T.: Mechanical behaviour of high polymers. New York: Interscience Publ. Inc. 1948.Google Scholar
  3. A3.
    Allen, V. R., and T. G. Fox: Viscosity-molecular weight dependence for short chain polystyrenes. J. Chem. Phys. 41, 337–343 (1964).Google Scholar
  4. A4.
    Aloisio, C. J., and S. Matsuoka: Measurements of relaxation time of an polyethylene melt. J. Polymer Sci. Part A-2, 4, 113–119 (1966).Google Scholar
  5. A5.
    andrade, C.: The viscosity of liquids. Nature 125, 309–310 (1930); 582–584 (1930).Google Scholar
  6. A6.
    andrade, E. N., u. C. Andrade: Die Viskosität von Flüssigkeiten. Endeavour 13, 117–127 (1954).Google Scholar
  7. B1.
    Bagley, E. B.: End corrections in the capillary flow of polyethylene. J. Appl. Phys. 28, 624–627 (1957).Google Scholar
  8. B2.
    — and D. C. West: Chain entanglement and non-Newtonian flow. J. Appl. Phys. 29, 1511–1512 (1958).Google Scholar
  9. B3.
    Power law flow curves of dimethylsiloxane polymers. J. Appl. Phys. 30, 597 (1959).Google Scholar
  10. B4.
    — and A. M. Birks: Flow of polyethylene into a capillary. J. Appl. Phys. 31, 556–561 (1960).Google Scholar
  11. B5.
    The separation of elastic and viscous effects in polymer flow. Trans. Soc. Rheol. 5, 355–368 (1961).Google Scholar
  12. B6.
    Balašov, M. M., u. A. N. Levin: Über das Fließen des durch Polymerisation in Masse gewonnenen Polystyrold „D“ und Konstruktion eines Rheometers (russ.). Kunststoffe Moskau, Nr. 1, 23–30 (1961).Google Scholar
  13. B7.
    Ballman, R. L. and R. H. M. Simon: The influence of molecular weight distribution on some properties of polystyrene melt. ACS. Org. Coat. and Plast. Chem. 23/2, 26–35 (Sept. 1963); J. Polymer Sci. Part A, 2, 3557–3575 (1964).Google Scholar
  14. B8.
    Increase in viscosity in polystyrene melt at high rates of shear. Nature 202, 288–289 (1964).Google Scholar
  15. B9.
    Barnes, W. J., and F. P. Price: Intrinsic and bulk viscosities of some polyethylene oxide polymers. J. Polymer Sci. 50, 25–26 (1961).Google Scholar
  16. B10.
    Barry, A. J.: Viscometric investigation of dimethylsiloxane polymers. J. Appl. Phys. 17, 1020–1024 (1964).Google Scholar
  17. B11.
    Bartenev, G. M.: Über das irreversible Fließen kautschukähnlicher Polymerer (russ.). Ber. Akad. Wiss. UdSSR (Doklady) 133, 88–91 (1960).Google Scholar
  18. B12.
    —: Bestimmung der Aktivierungsenergie des viskosen Fließens von Polymeren aus experimentellen Werten (russ.). Makromol. Verb. Moskau 6, 335–340 (1964).Google Scholar
  19. B12a.
    335–340 (1964); Deutsche Übersetzung in: Plaste Kautschuk 10, 587–589 (1963).Google Scholar
  20. B13.
    — u. L. A. Visnickaja: Rheologische Eigenschaften von Polyisobutylen (russ.). Makromol. Verb. Moskau 6, 751–757 (1964).Google Scholar
  21. B14.
    Einfluß der Schubspannung auf die Viskosität linearer Polymerer (russ.). Makromol. Verb. Moskau 6, 2155–2162 (1964).Google Scholar
  22. B15.
    Gesetzmäßigkeiten und Mechanismus des viskosen Fließens von linearen Polymeren (russ.). Kunststoffe Moskau 12, 20–26 (1964).Google Scholar
  23. B16.
    — Z. G. Provarova u. V. A. Kargin: Rheologische Eigenschaften und übermolekulare Struktur von kautschukähnlichen Polymeren. Ber. Akad. Wiss. UdSSR 159, 1350–1353 (1964).Google Scholar
  24. B17.
    Bartoš, O.: Tokové vlastnosti tavenin vysokotlakého a nizkothlakého polyethylenu a polypropylenu. Rheologische Eigenschaften von Hochdruck-Polyäthylen, Niederdruck-Polyäthylen und Polypropylen (tschechisch). Chem. Prumysl 12, 97–102 (1962).Google Scholar
  25. B18.
    Tokové vlastnosti tavenin platických hmot. Rheologische Eigenschaften von Kunststoff-Schmelzen (tschechisch). Chem. Prumysl 12, 332–335 (1962).Google Scholar
  26. B19.
    Baumann, G. F., and S. Steingiser: Rheological measurements on polycarbonate. ACS Div. Polymer Chem. 3, 141–152 (Sept. 1962); J. Polymer Sci. Part A 1, 3395–3406 (1963).Google Scholar
  27. B20.
    Bestul, A. B., and H. V. Belcher: Temperature coefficients of Non-Newtonian viscosity at fixed shearing stress and at fixed rate of shear. J. Appl. Phys. 24, 696–702 (1953).Google Scholar
  28. B21.
    Beynon, D. L. T., and B. S. Glyde: The swelling and fracture of polythene melts. Brit. Plastics 33, 414–419 (1960).Google Scholar
  29. B22.
    Bondi, A.: Notes on the rate process theory of flow. J. Chem. Phys. 14, 591–607 (1946).Google Scholar
  30. B23.
    Boyd, R. H.: Shear rate dependence of the viscosity and elastic compliance of polymer melts-correspondence with a hydrodynamic theory of viscoelastic flow. J. Appl. Phys. 29, 953–956 (1958).Google Scholar
  31. B24.
    Bridgman, P. W.: The viscosity of pure liquids under pressure. Phys. Rev. 25, 899 (1925).Google Scholar
  32. B 25.
    Brodnyan, J. G., R. H. Shoulberg, and E. L. Kelley: The correlation of the non-Newtonian flow of polymeric melts with the theories of Bueche. ACS, Org. Coat. Plast. Chem. 23, 101–107 (Sept. 1963); SPE Trans. 4, 277–281 (1964).Google Scholar
  33. B 26.
    Buchdahl, R.: Rheology of thermoplastic materials. I. Polystyrene. J. Colloid Sci. 3, 87–98 (1948).Google Scholar
  34. B 27.
    — L. E. Nielsen, and E. H. Merz: Rheology of thermoplastics. II. Recoverable and nonrecoverable deformations of polystyrene between 90 and 240 °C as a function of molecular weight. J. Polymer Sci. 6, 403–422 (1951).Google Scholar
  35. B 28.
    Buchhalzer, V. L., u. J. D. Severovotskova: Über die Optimalbedingungen für die Verarbeitung von Thermoplasten. Kunststoffe Moskau 2, 44–47 (1960).Google Scholar
  36. B 29.
    Bueche, F.: Viscosity, self-diffusion, and allied effects in solid polymers. J. Chem. Phys. 20, 1959–1964 (1952).Google Scholar
  37. B 30.
    Influence of rate of shear on the apparent viscosity of A-dilute polymers solutions, and B-bulk polymers. J. Chem. Phys. 22, 1570–1576 (1954).Google Scholar
  38. B 31.
    Viscoelaticity of polymethacrylates. J. Appl. Phys. 26, 738–749 (1955).Google Scholar
  39. B 32.
    Viscosity of polymers in concentrated solution. J. Chem. Phys. 25, 599–600 (1956).Google Scholar
  40. B 33.
    Non-Newtonian viscosity of synthetic rubber and its solutions. J. Appl. Phys. 30, 1114 (1959).Google Scholar
  41. B 34.
    — Physical properties of polymers. New York-London: Interscience Publ. J. Wiley & Sons, Inc. 1962.Google Scholar
  42. B 35.
    Rate and pressure effects in polymers and other glassforming substances. J. Chem. Phys. 36, 2940–2946 (1962).Google Scholar
  43. C 1.
    Carley, J. F.: Effect of static pressure on polymer melt viscosities. Modern Plastics 39, 123–125, 130, 198, 200, 202, 204 (1961).Google Scholar
  44. C 2.
    Case, L. C.: Viscosity of polytetrafluorethylene above melting point. J. Appl. Polymer Sci. 3, 254 (1960).Google Scholar
  45. C 3.
    Chikahisa, Y.: A theory on the relationship between viscosity and molecular weight in bulk polymers. J. Phys. Soc. Japan 19, 92–100 (1964).Google Scholar
  46. C 4.
    Coleman, B. D., and W. Noll: Helical flow of general fluids. J. Appl. Phys. 30, 1508–1512 (1959).Google Scholar
  47. C 5.
    Coleman, B. D., and W. Noll: An approximation theorem for functionals with application in continuum mechanics. Arch. Rat. Mech. Anal. 6, 355–370 (1960).Google Scholar
  48. C 6.
    — —On certain steady flows of general fluids. Arch. Rat. Mech. Anal. 3, 289–303 (1959).Google Scholar
  49. C 7.
    — H. Markovitz, and W. Noll: Viscometric flows of non-Newtonian fluids. Theory and experiment. Berlin-Heidelberg-New York: Springer-Verlag 1966.Google Scholar
  50. C 8.
    Conti, W., and I. Gigli: Non-Newtonian behavior of polymers with lognormal molecular weight distribution. J. Polymer Sci. Part A-1, 4, 1093–1111 (1966).Google Scholar
  51. C 9.
    Currie, C. C., and B. F. Smith: Flow characteristics of organopolysiloxane fluids and greases. Ind. Eng. Chem. 42, 2457–2462 (1950).Google Scholar
  52. C 10.
    Cvetkov, V. N., L. D. Sokolova u. L. D. Frolova: Änderung der Deformations-Eigenschaften dünner Schichten von Polymer-Schmelzen in Abhängigkeit von der Temperatur (russ.). Kunststoffe, Moskau 6, 56–58 (1966).Google Scholar
  53. C 11.
    Charlesby, A.: Viscosity measurements in branched silicones. J. Polymer. Sci. 7, 379–380 (1955).Google Scholar
  54. D 1.
    Dexter, F. D.: Rotational plastometry applied to molten polyethylene. J. Appl. Phys. 25, 1124–1129 (1954).Google Scholar
  55. D 2.
    Dienes, G. J., and H. F. Klemm: Theory and application of the parallelplate-plastometer. J. Appl. Phys. 17, 458–471 (1946).Google Scholar
  56. D 3.
    Viscoelastic properties of thermoplastics at elevated temperatures. J. Colloid Sci. 2, 131–161 (1947).Google Scholar
  57. D 4.
    — and F. D. Dexter: Notes on: The viscous flow of molten polystyrene by Spencer and Dillon. J. Colloid Sci. 3, 181–183 (1948).Google Scholar
  58. D 5.
    Döring, G., u. H. J. Leugering: Über das Fließverhalten von Polyäthylen-Schmelzen. Kunststoffe 53, 11–18 (1963).Google Scholar
  59. D 6.
    Doi, H., u. Y. Mikami: Gleit-Reibung von geschmolzenen Polymeren (japan., engl. Kurzreferat). Chem. High Polymers Tokyo 23, 213–221 (1966).Google Scholar
  60. D 7.
    Doolittle, A. K., and R. H. Peterson: Preparation and physical properties of a series of n-alkanes. J. Am. Chem. Soc. 73, 2145–2151 (1951).Google Scholar
  61. D 8.
    Studies in non-Newtonian flow. III. The dependence of the viscosity of liquids on molecular weight and free space (in homologous series). J. Appl. Phys. 23, 236–239 (1952).Google Scholar
  62. D 9.
    Druzinina, T. V., A. A. Konkin u. G. V. Vinogradov: Über die Viskosität von Polyäthylenschmelzen (russ.). Chemie-Fasern, Moskau 1, 25–29 (1963).Google Scholar
  63. E 1.
    Eringen, A. C.: Nonlinear theory of continous media. New York: McGraw-Hill Book Comp. Inc. 1962.Google Scholar
  64. E 2.
    Ewell, R. H.: The reaction rate theory of viscosity and some of its applications. J. Appl. Phys. 9, 252–269 (1938).Google Scholar
  65. E 3.
    Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).Google Scholar
  66. E 4.
    — T. Ree, and N. Hirai: The viscosity of high polymers — the random walk of a group of connected segments. Proc. Nat. Acad. Sci. 44, 1213–1217 (1958).Google Scholar
  67. F 1.
    Faucher, J. A.: Extension of the Eyring-Ree theory of Non-Newtonian flow. J. Appl. Phys. 32, 2336–2338 (1961).Google Scholar
  68. F 2.
    Ferguson, J. B., B. Wright, and R. N. Haward: The flow properties of polyethylene whole polymers and fractions. J. Appl. Chem. 14, 53–63 (1964).Google Scholar
  69. F 3.
    Ferry, J. D., and G. S. Parks: Viscous properties of polyisobutylene. Physics 6, 356–362 (1935).Google Scholar
  70. F 4.
    — and R. A. Stralton: The free volume interpretation of the dependence of viscosities and visco-elastic relaxation times on concentration, pressure and tensile strain. Kolloid-Z. 171, 107–111 (1960).Google Scholar
  71. F 5.
    — Viscoelastic properties of polymers. New York-London: John Wiley & Sons Inc. 1961.Google Scholar
  72. F 6.
    Feinstein, R. M., E. A. Korytova, I. W. Konych u. G. V. Vinogradov: Rheologie der Polymeren. Über den Einfluß der Zusammensetzung des PÄ(HD) aus Fraktionen auf die Viskositätseigenschaften der Schmelzen (russ.). Kunststoffe Moskau 11, 31–34 (1964).Google Scholar
  73. F 7.
    Fiedler, P., u. H. Tautz: Fließverhalten von Polyäthylen bei hohem Schergefälle. Plaste Kautschuk 13, 284–289 (1966).Google Scholar
  74. F 8.
    Flory, P. J.: Viscosities of linear polyesters. An exact relationship between viscosity and chain length. J. Am. Chem. Soc. 62, 1057–1070 (1940).Google Scholar
  75. F 9.
    Fox, T. G., u. P. J. Flory: Viscosity-molecular weight and viscosity-temperature relationships for polystyrene and polyisobutylene. J. Am. Chem. Soc. 70, 2384–2395 (1948).Google Scholar
  76. F 10.
    — —Second-order transition temperatures on related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21, 581–591 (1950).Google Scholar
  77. F 11.
    — —Further studies on the melt viscosity of polyisobutylene. J. Phys. Chem. 55, 221–234 (1951).Google Scholar
  78. F 12.
    — —The glass temperature and related properties of polystyrene. Influence of molecular weight. J. Polymer Sci. 14, 315–319 (1954).Google Scholar
  79. F 13.
    — and S. Loshaek: Isothermal viscosity-molecular weight dependence for long polymer chains. J. Appl. Phys. 26, 1080–1082 (1955).Google Scholar
  80. F 14.
    — S. Gratch, and S. Loshaek: Viscosity relationships for polymers in bulk and in concentrated solution. In: Eirich, F. R.: Rheology-theory and application. 1, p. 431–493. New York: Academic Press Inc. Publ. 1956.Google Scholar
  81. F 15.
    — and V. R. Allen: Dependence of the zero shear melt viscosity and the related friction coefficient and critical chain length on measurable characteristics of chain polymers. J. Chem. Phys. 41, 344–352 (1964).Google Scholar
  82. F 16.
    Frank, H. P.: Rheologische Messungen an Polypropylenschmelzen. I. Beziehung zwischen Schmelzviskosität, Molekulargewicht und Molekulargewichtsverteilung. Rheol. Acta 5, 89–93 (1966).Google Scholar
  83. F 17.
    Fredrickson, A. G.: Principles and applications of rheology. Englewood Cliffs, N. J.: Prentice Hall, Inc. 1964.Google Scholar
  84. F 18.
    Frenkel, J.: Über die Wärmebewegung in festen und flüssigen Körpern. Z. Physik 35, 652–669 (1926).Google Scholar
  85. G 1.
    Garfield, L. J., S. E. Petrie, and D. W. Vanas: The rheology of poly (neopentyl succinate). Trans. Soc. Rheol. 6, 131–141 (1962).Google Scholar
  86. G 2.
    Geiseler, G.: Zum viskosen Fließen flüssiger Polymerisate des Äthylens. Z. Phys. Chem. A 208, 64–77 (1957).Google Scholar
  87. G 3.
    Gibbs, D. A., and E. W. Merrill: A shear creep viscometer for rheological studies of polymers. Proc. of Fourth Intern. Congr. on Rheology 2, 183–192 (1965).Google Scholar
  88. G 4.
    Giesekus, H.: Einige Bemerkungen zum Fließverhalten elastoviskoser Flüssigkeiten in stationären Schichtströmungen. Rheol. Acta 1, 404–413 (1961).Google Scholar
  89. G 5.
    Elasto-viskose Flüssigkeiten für die in stationären Schichtströmungen sämtliche Normalspannungskomponenten verschieden groß sind. Rheol. Acta 2, 50–62 (1962).Google Scholar
  90. G 6.
    Flüssigkeiten mit im Ruhezustand singulärem Fließverhalten (quasiplastische Flüssigkeiten). Rheol. Acta 2, 122–130 (1962).Google Scholar
  91. G 7.
    Giesekus, H.: Die rheologische Zustandsgleichung elastoviskoser Flüssigkeiten — insbesondere von Weissenberg-Flüssigkeiten — für allgemeine und stationäre Fließvorgänge. ZAMM 42, 32–61 (1962).Google Scholar
  92. G 8.
    Glasstone, S., K. J. Laidler, and H. Eyring: The theory of rate processes Eyring. Cap. IX, p. 477–551. New York-London: McGraw Comp. Inc. 1941.Google Scholar
  93. G 9.
    Gluchov, E. E., u. S. L. Klaz: Rheologische Eigenschaften von Niederdruck-Polyäthylen und Beurteilung seiner Fließfähigkeit (russ.). Kunststoffe Moskau (Plast. Massy) 5, 30–33 (1962).Google Scholar
  94. G 10.
    — G. V. Vinogradov, u. S. I. Klaz: Rheologie der Polymere. Untersuchung der rheologischen Eigenschaften von Polymerschmelzen bei hohen Deformationsgeschwindigkeiten (russ.). Makromol. Verb. Moskau 5, 1543–1548 (1963).Google Scholar
  95. G 11.
    Göttfert, O.: Prüfmaschine zur Ermittlung der Fließ-und Spritzfähigkeit von Kunststoffen. Kunststoffe 52, 434–437 (1962).Google Scholar
  96. G 12.
    Green, H. S.: The structure of liquids. In: Flügge, S.: Handbuch der Physik, Bd. X, S. 1–133. Berlin-Göttingen-Heidelberg: Springer 1960Google Scholar
  97. G 13.
    Green, A. E., and J. E. Adkins: Large elastic deformations and nonlinear continuum mechanics. Oxford: Oxford University Press 1960.Google Scholar
  98. G 14.
    Gross, B.: Mathematical structure of the theories of visoelasticity. Actualités Scientifiques et Industrielles, 1190, Rheology, Paris 1953.Google Scholar
  99. G 15.
    Gruver, J. T., and G. Kraus: Rheological properties of polybutadienes by n-butyllithium initiation. J. Polymer Sci. Part A 2, 797–810 (1964).Google Scholar
  100. H 1.
    Hayashi, S.: Theory of viscoelasticity in temporarily crosslinked polymers II. Relaxation spectrum and steady flow viscosity. J. Phys. Soc. Japan 18, 249–256 (1963).Google Scholar
  101. H 2.
    Theory of viscoelasticity in temporary crosslinked polymers III. J. Phys. Soc. Japan 19, 101–107 (1964).Google Scholar
  102. H 3.
    Hellwege, K.-H., W. Knappe, P. Paul u. V. Semjonow: Druckabhängigkeit der Viskosität einiger Polystyrolschmelzen. Rheol. Acta 6, 165–170 (1967).Google Scholar
  103. H 4.
    Hirai, N., and H. Eyring: Bulk viscosity of polymeric systems. J. Polymer Sci. 37, 51–70 (1959).Google Scholar
  104. H 5.
    Hoffmann, M., u. K. Rother: Strukturviskosität und molekulare Struktur von Fadenmolekülen. Makromol. Chem. 80, 95–111 (1964).Google Scholar
  105. H 6.
    Holden, G.: Viscosity of polyisoprene. J. Appl. Polymer Sci. 9, 2911–2925 (1965).Google Scholar
  106. H 7.
    Holzmüller, W., u. R. Dinter: Rotationsviskosimeter zur Bestimmung der Viskosität bei hohen Drucken. Exp. Tech. Physik 8, 118–126 (1960).Google Scholar
  107. H 8.
    Horak, H.: Vergleichende Untersuchungen über das Fließverhalten und die elastischen Eigenschaften von Polyäthylenschmelzen. Kunststoffe 55, 158–167 (1965).Google Scholar
  108. H 9.
    Hunter, M. J., E. L. Warrick, J. F. Hyde, and C. C. Currie: Organosilicon polymers II. The open chain dimethylsiloxanes with trimethylsiloxy end groups. J. Am. Chem. Soc. 68, 2284–2290 (1946).Google Scholar
  109. H 10.
    Hurd, C. B.: Studies on siloxanes. I. The specific volume and viscosity in relation to temperature and constitution. J. Am. Chem. Soc. 68, 364–370 (1946).Google Scholar
  110. K1.
    Kamide, K., Y. Inamoto u. K. Ohno: Kapillares Fließen von Polypropylen. III. Einfluß von Molekulargewicht und Molekulargewichtsverteilung auf das Fließen (japan., engl. Kurzreferat). Chem. High Polymers. 22, 529–538 (1965).Google Scholar
  111. K2.
    Karam, H. J., K. J. Cleereman, and J. L. Williams: An new melt viscometer. Mod. Plastics 32, 129–134, 226 (1955).Google Scholar
  112. K3.
    Kataoka, T., and S. Ueda: Flow behavior of polydimethylsiloxane. J. Polymer Sci. Part A 3, 2947–2954 (1965).Google Scholar
  113. K4.
    — —Viscosity-molecular weight relationship for polydimethylsiloxane J. Polymer Sci. Part B 4, 317–322 (1966).Google Scholar
  114. K5.
    Kauzmann, W., and H. Eyring: The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940).Google Scholar
  115. K6.
    Klaz, S. I., u. E. E. Gluchov: Rheologische Kennzeichnung von Hochdruck-Polyäthylen (russ). Kunststoffe Moskau (Plast. Massy) 3, 28–31 (1961).Google Scholar
  116. K7.
    Konjuch, I. V., G. V. Vinogradov u. A. A. Konstantinov: Rheologie der Polymeren (russ). Kunstostoffe Moskau 10, 45–49 (1963).Google Scholar
  117. K8.
    Koppelmann, J.: The dependence of relaxation times on free volume in high polymers. Proc. of the 4th Int. Congr. on Rheology. Vol. 3, S. 361–377, New York: John Wiley & Sons 1965.Google Scholar
  118. K9.
    Koreckaja, A. I., A. A. Konstantinow u. G. V. Vinogradov: Gerät zur Bestimmung der Schmelz-Viskosität von Polyamiden (russ.). Chemie Fasern, Moskau (Chim Volokna) 2, 36–39 (1960).Google Scholar
  119. K10.
    Kraus, G., and J. T. Gruver: Rheological properties of multichain polybutadienes. J. Polymer Sci. A 3, 105–122 (1965).Google Scholar
  120. K11.
    Kuss, E.: Hochdruckuntersuchungen IV: Das Viskositäts-Druckverhalten hochmolekularer Substanzen. Z. Angew. Physik 10, 566–575 (1958).Google Scholar
  121. L1.
    Langlois, W. E.: Slow viscous flow. New York: Macmillan Co. 1964.Google Scholar
  122. L2.
    Leaderman, H., and R. G. Smith: Viscoelastic and flow properties of polyisobutylene. Phys. Rev. 81, 303 (1951).Google Scholar
  123. L3.
    Lee, C. L., and G. G. Haberland: Polymethylsiloxamer. J. Polymer Sci. Part B 3, 883–886 (1965).Google Scholar
  124. L4.
    Leonov, A. I., u. G. V. Vinogradov: Rheologie der Polymere, Theorie der Thixotropie (russ.). Ber. Akad. Wiss. UdSSR (Doklady) 155, 406–409 (1964).Google Scholar
  125. L5.
    Lodge, A. S.: Elastic liquids. London-New York: Academic Press 1964.Google Scholar
  126. L6.
    Longworth, R., and W. F. Busse: Melt-viscosity relationships for molten polyethylene-paraffin wax mixtures. Trans. Soc. Rheol. 6, 179–196 (1962).Google Scholar
  127. L7.
    — and E. T. Pieski: Melt index as a measure of Newtonian viscosity. J. Polymer Sci. Part B 3, 221–226 (1965).Google Scholar
  128. M1.
    Marker, L., R. Early, and S. L. Aggarwal: Melt viscosity of polyethylenes, Shear dependence of viscosity. J. Polymer Sci. 38, 381–392 (1959).Google Scholar
  129. M2.
    Markovitz, H., T. G. Fox, and J. D. Ferry: Calculations of entanglement coupling spacings in linear polymers. J. Phys. Chem. 66, 1567–1568 (1962).Google Scholar
  130. M3.
    Maxwell, B., and A. Jung: The hydrostatic pressure effect on polymer melt viscosity. Princeton Report 46 A vom 1. Juli 1957. vgl. Mod. Plastics 35, 174–175, 178–182, 276 (1957).Google Scholar
  131. M4.
    Mayrick, R. G., and C. L. Sieglaff: Extrusion characteristics of polyvinylchlorid. J. Appl. Polymer Sci. 9, 3917–3927 (1965).Google Scholar
  132. M5.
    McGlamery, R. M., and A. A. Harban: Two instruments for measuring the low shear viscosity of polymer melts. Mat. Res. Stand. 3, 1003–1007 (1963).Google Scholar
  133. M6.
    McKelvey, I. M., I. Gavis, and T. G. Smith: Flow properties of thermoplastic melts. SPE J. 13, 29–35, 64 (1957).Google Scholar
  134. M7.
    McKennell, R., and K. Watkin: Cone-plate viscometer for operation up to 200°C. Rehol. Acta 1, 545–548 (1961).Google Scholar
  135. M8.
    Meissner, J.: Untersuchungen über das Fließverhalten von geschmolzenem Polyäthylen mit dem Kapillar-Viskosimeter. Materialprüfung 5, 107–113 (1963).Google Scholar
  136. M9.
    — The effect of temperature on the flow properties of the low density polyethylene melt. Paper presented at the 4th Intern. Congr. on Rheology, 26.–30. Aug. 1963, Teil 3, S. 437–453.Google Scholar
  137. M10.
    — Rheologische Grundlagen der Verarbeitung von Polystyrol. Kunststoff-Handbuch, Bd. V Polystyrol, Abschnitt 3.1. München: Carl Hanser 1965.Google Scholar
  138. M11.
    Melentev, Ju. I., A. A. Tager u. A. A. Semuchina: Rheologische und technologische Eigenschaften von Polyäthylenschmelzen. Kunststoffe Moskau 5, 39–42 (1966).Google Scholar
  139. M12.
    Merker, R. L.: Association and entanglement in high polymers. I. Effect on viscosity properties of dimethylpolysiloxanes. J. Polymer Sci. 22, 353–362 (1956).Google Scholar
  140. M13.
    — and M. J. Scott: Viscometric properties of salicyloxymethyldimethyl end blocked dimethylsiloxanes. J. Polymer Sci. 24, 1–9 (1957).Google Scholar
  141. M14.
    Merz, E. H., and R. E. Colwell: A high shear rate capillary rheometer for polymer melts. ASTM Bulletin 232, 63–66 (1958).Google Scholar
  142. M15.
    Meskat, W.: Spezielle Betriebsmeßverfahren. I. Viskosimetrie. In: Hengstenberg, J., B. Sturm u. O. Winkler: Messen und Regeln in der chemischen Technik. 2. Aufl., S. 856–994. Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  143. M16.
    — Fortschritte der Rheometrie. Teil I. Theoretische Grundlagen. ATM-Blatt V 91220-F2 (Mai 1964). Arch. Tech. Messen Nr. 340, 119–120 (1964).Google Scholar
  144. M17.
    Metzger, A. P., C. W. Hamilton, and E. H. Merz: Anomalous flow behavior of high density polyethylene melts. SPE Trans. 3, 21–26 (1963).Google Scholar
  145. M18.
    —and R. S. Brodkey: Measurement of the flow molten polymers through short capillaries. J. Appl. Polymer Sci. 7, 399–410 (1963).Google Scholar
  146. M19.
    — and C. W. Hamilton: The oscillating shear phenomenon in high density polyethylenes. SPE Trans. 4, 107–112 (1964).Google Scholar
  147. M20.
    Meyerhoff, G.: Die viscosimetrische Molekulargewichtsbestimmung von Polymeren. Fortschr. Hochpolymer. Forsch. 3, 59–105 (1961).Google Scholar
  148. M21.
    Mooney, M.: A theory of the viscosity of a Maxwellian elastic liquid. Trans. Soc. Rheol. 1, 63–94 (1957).Google Scholar
  149. M22.
    Moore, L. D., Jr.: Relations among melt viscosity, solution viscosity, molecular weight and long-chain branching in polyethylene. J. Polymer Sci. 36, 155–172 (1959).Google Scholar
  150. M23.
    Moravec, J.: Graphische Beurteilung der rheologischen Eigenschaften von Kunststoffen (tschechisch). Chem. Ind. Prag 11, 265–270 (1961).Google Scholar
  151. M24.
    Mussa, C., V. Tablino, and A. Nasini: Elasticity of molten polymers from stress relaxation data. J. Appl. Polymer Sci. 5, 574–579 (1961).Google Scholar
  152. M25.
    Mussa, C., and V. Tablino: Stress relaxation in molten polymers. J. Appl. Polymer Sci. 6, 21 (1962).Google Scholar
  153. M26.
    — —Stress relaxation in molten polymers II. J. Appl. Polymer Sci. 7, 1391–1402 (1963).Google Scholar
  154. M27.
    Polymer characterization from stress relaxation experiments. Plast. Inst. Trans. J. 31, 146–147 (1963).Google Scholar
  155. M28.
    Stress relaxation in molten polymers III. J. Appl. Polymer Sci. 7, 1673–1677 (1963).Google Scholar
  156. M29.
    — P. Sacerdote, P. Gugllelmino, and V. Tablino: Stress relaxation in molten polymers IV. J. Appl. Polymer Sci. 8, 385–398 (1964).Google Scholar
  157. M30.
    Mustafaev, E., A. J. Malkin, E. P. Plotnikova u. G. V. Vinogradov: Rheologische Eigenschaften von Polyisobutylen (russisch). Makromol. Verb. Moskau 6, 1515–1521 (1964).Google Scholar
  158. N1.
    Nakajima, N., G. A. Tirpak, and M. Shida: Branching and flow activationenergy of conventional high pressure process polyethylene. J. Polymer Sci. Part B, 3, 1089–1092 (1965).Google Scholar
  159. N2.
    Nakatsuka, R.: The viscometric properties of polyesters. I. A comparison between crystalline and amorphus polyesters. Bull. Chem. Soc. Jap. 36, 1294–1300 (1963).Google Scholar
  160. N3.
    The viscometric properties of polyesters. II. Viscosity in the range of low temperatures near the glass transition point, Bull. Chem. Soc. Jap. 37, 403–409 (1964).Google Scholar
  161. N4.
    Noll, W.: On the continuity of the solid and fluid states. J. Rat. Mech. Anal. 4, 3–81 (1955).Google Scholar
  162. N5.
    A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal. 2, 197–226 (1958).Google Scholar
  163. O1.
    Oka, S., and A. Takami: Theory of an oscillating coaxial cylinder viscometer for viscoelastic materials. Jap. J. Appl. Phys. 4, 803–807 (1965).Google Scholar
  164. O2.
    Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. Roy. Soc. A 200, 523–541 (1950).Google Scholar
  165. O3.
    Non-Newtonian effects in steady motion of idealized elastico-viscous liquids. Proc. Roy. Soc. A 245, 278–297 (1958).Google Scholar
  166. O4.
    Ostwald, W.: Über die Geschwindigkeitsfunktion der Viskosität disperser Systeme, I, II, IV. Kolloid-Z. 36, 99–117, 157–167, 248–250 (1925).Google Scholar
  167. P1.
    Pao, Yoh-Han: Dependence of intrinsic viscosity of dilute solutions of macromolecules on velocity gradient. J. Chem. Phys. 25, 1294–1295 (1956).Google Scholar
  168. P2.
    Hydrodynamic theory for the flow of a viscoelastic fluid. J. Appl. Phys. 28, 591–598 (1957).Google Scholar
  169. P3.
    Theories for the flow of dilute solutions of polymers and of nondiluted liquid polymers. J. Polymer Sci. 61, 413–448 (1962).Google Scholar
  170. P4.
    Peticolas, W. L., and J. M. Watkins: The molecular structure of polyethylene. VII. Melt viscosity and the effect of molecular weight and branching. J. Am. Chem. Soc. 79, 5083–5085 (1957).Google Scholar
  171. P5.
    Pezzin, G., and G. B. Gechele: Capillary viscometry of molten poly-caprolactam. J. Appl. Polymer Sci. 8, 2195–2212 (1964).Google Scholar
  172. P6.
    Philippoff, W., and F. H. Gaskins: Viscosity measurements on molten polyethylene. J. Polymer Sci. 21, 205–222 (1956).Google Scholar
  173. P7.
    Plazek, D. J., W. Dannhäuser, and J. D. Ferry: Viscoelastic dispersion of polydimethylsiloxane in the rubberlike plateau zone. J. Colloid Sci. 10, 101–126 (1961).Google Scholar
  174. P8.
    Pohl, H. A., and C. G. Gogos: The behavior of polyisobutylene during melt shear. Princeton University, Plastics Labor. Technical Report 57b, (12. April 1960), und J. Appl. Polymer Sci. 5, 67–79 (1961).Google Scholar
  175. P9.
    Pollett, W. F. O.: Rheological behavior of continuously sheared polythene. Brit. J. Appl. Phys. 6, 199–206 (1955).Google Scholar
  176. P10.
    Porter, R. S., and J. F. Johnson: Viscosity of polyethylenes: Dependence on molecular weight and temperature. J. Appl. Polymer Sci. 3, 194–199 (1960).Google Scholar
  177. P11.
    — —Viscosity of polyethylenes: Dependence on molecular weight at high shear. J. Appl. Polymer Sci. 3, 200–205 (1960).Google Scholar
  178. P12.
    — —An empirical concept of flow for polyisobutene systems. J. Polymer Sci. 50, 379–391 (1961).Google Scholar
  179. P13.
    — —Non-Newtonian viscosity of polymers. J. Appl. Physics. 32, 2326–2331 (1961).Google Scholar
  180. P14.
    — —Shear viscosities of polyisobutene systems. — A study of polymer entanglement. Polymer 3, 11–16 (1962).Google Scholar
  181. P15.
    — —The entanglement chain length and polymer composition. Proc. Fourth International Congress on Rheology Part 2, 467–477 (1965).Google Scholar
  182. P16.
    Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM 8, 85–106 (1928).Google Scholar
  183. P17.
    Betrachtungen zur Rheologie. Phys. Blätter 5, 161–172 (1949).Google Scholar
  184. P18.
    — u. Fr. Vandrey: Fließgesetze normal-zäher Stoffe im Rohr. Ein Beitrag zur Rheologie. ZAMM 30, 169–174 (1950).Google Scholar
  185. R1.
    Ram, A., and M. Narkis: Simplified correlations for linear polyethylene. J. Appl. Polymer Sci. 9, 3225–3230 (1965).Google Scholar
  186. R2.
    Ree, T., and H. Eyring: Theory of Non-Newtonian flow. I. Solid plastic system. J. Appl. Phys. 26, 793–800 (1955).Google Scholar
  187. R3.
    — —The relaxation theory of transport phenomena F. R. Eirich. Rheology II, Cap. 3, p. 83. New York: Academic Press 1956.Google Scholar
  188. R4.
    Ree, F. H., T. Ree and H. Eyring: Relaxation theory of transport problems in condensed systems. Ind. Eng. Chem. 50, 1036–1040 (1958).Google Scholar
  189. R5.
    Reiner, M.: The contripetal-pump effect in a vacuum pump. Proc. Roy. Soc. 247 A, 152–167 (1958).Google Scholar
  190. R6.
    A mathematical theory of dilatancy. Am. J. Math. 67, 350–362 (1945).Google Scholar
  191. R7.
    Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids I. Proc. Roy. Soc. A 193, 260–281 (1948).Google Scholar
  192. R8.
    The hydrodynamics of non-Newtonian fluids II. Proc. Cambridge Phil. Soc. 45, 88–91 (1949).Google Scholar
  193. R9.
    — and J. C. Ericksen: Stress-deformation relation for isotropic materials. J. Rat. Mech. Anal. 4, 323–425 (1955).Google Scholar
  194. R10.
    Rudd, J. F.: The effect of molecular weight distribution on the rheological properties of polystyrene. J. Polymer Sci. 44, 459–474 (1960).Google Scholar
  195. R11.
    Low shear melt viscosity of polystyrene. J. Polymer Sci. 60, S7–S9 (1962).Google Scholar
  196. S1.
    Sabia, R. W. R.: On the characterization of non-Newtonian flow. J. Appl. Polymer Sci. 7, 347–355 (1963).Google Scholar
  197. S 2.
    Saunders, D. W., and L. R. G. Treloar: Flow phenomena in rubber. 1) Flow curves for natural rubber. Trans. IRI. 24, 92–100 (1948/49).Google Scholar
  198. S 3.
    Schaefgen, J. R., and P. J. Flory: Synthesis of multichain polymers and investigation of their viscosities. J. Am. Chem. Soc. 70, 2709–2718 (1948).Google Scholar
  199. S 4.
    Schott, H., and W. S. Kaghan: Viscous flow of molten polyethylene resins. J. Appl. Polymer Sci. 5, 175–183 (1961).Google Scholar
  200. S 5.
    Schreiber, H. P.: Polyethylene flow data from melt viscosimeter and commercial extruder measurement. SPE Trans. 1, 86–92 (1961).Google Scholar
  201. S 6.
    — and E. B. Bagley: The Newtonian melt viscosity of polyethylene: An index of long-chain branching. J. Polymer Sci. 58, 29–48 (1962).Google Scholar
  202. S 7.
    — — and D. C. West: Viscosity/molecular weight relation in bulk polymers-I. Polymer 4, 355–364 (1963).Google Scholar
  203. S 8.
    Viscosity/molecular weight relation in bulk polymers-II. Onset of Non-Newtonian flow. Polymer 4, 365–374 (1963).Google Scholar
  204. S 9.
    Some relationships between molecular structure and flow in linear polyethylene. J. Appl. Polymer Sci. 9, 2101–2119 (1965).Google Scholar
  205. S 10.
    Semjonow, V.: Über ein Rotationsviskosimeter zur Messung der Druckabhängigkeit der Viskosität hochpolymerer Schmelzen. Rheol. Acta 2, 138–143 (1962).Google Scholar
  206. S 11.
    Zur Auswertung von Meßergebnissen an nicht-Newtonschen Flüssigkeiten. Rheol. Acta 3, 98–100 (1963).Google Scholar
  207. S 12.
    — Untersuchung über die Druckabhängigkeit der Viskosität hochpolymerer Schmelzen. Dissertation an der Fakultät Mathematik und Physik der TH Darmstadt 1963.Google Scholar
  208. S 13.
    Druckabhängigkeit der Viskosität einiger Polyolefinschmelzen. Rheol. Acta 4, 133–137 (1965).Google Scholar
  209. S 14.
    — Unveröffentlichte Meßergebnisse. Deutsches Kunststoff-Institut, Darmstadt 1965.Google Scholar
  210. S 15.
    Rheometrie hochpolymerer Schmelzen. Kunststoffe 56, 7–11 (1966).Google Scholar
  211. S 16.
    Auswertung von Meßergebnissen an Kapillar-Rheometern. Kunststoffe 56, 163–166 (1966).Google Scholar
  212. S 17.
    Sieglaff, C. L.: Rheological properties of polyvinyl chloride. Part I: General flow properties. Part II: Unstable flow. Part III: Post extrusion swelling. SPE Trans. 4, 129–138 (1964).Google Scholar
  213. S 18.
    Smelkow, R. E., u. N. A. Kozulin: Elastizität von Polymer-Schmelzen und ihre praktische Ausnutzung (russ.). J. Angew. Chem. Moskau (Zurn. Prikl. Chim.) 35, 2693–2700 (1962).Google Scholar
  214. S 19.
    — —Die Energie der elastischen Deformation von Polymer-Schmelzen (russ.). J. Angew. Chem. Moskau 36, 2460–2464 (1963).Google Scholar
  215. S 20.
    Untersuchung des Weissenberg-Effekts an Polyäthylenen im Bereich der Schmelze und mit Füllmitteln (russ.). J. Angew. Chem. Moskau 37, 1310–1318 (1964).Google Scholar
  216. S 21.
    Spencer, R. S., u. R. E. Dillon: The viscous flow of molten polystyrene I. J. Colloid Sci. 3, 163–180 (1948).Google Scholar
  217. S 22.
    — —The viscous flow of molten polystyrene II. J. Colloid Sci. 4, 241–255 (1949).Google Scholar
  218. S 23.
    Flow of linear amorphous polymers. J. Polymer Sci. 5, 591–608 (1950).Google Scholar
  219. T 1.
    Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rat. Mech. Anal. 1, 125–300 (1952); 2, 593–616 (1953).Google Scholar
  220. T 2.
    — and W. Noll: In: S. Flügge: The non-Newtonian field theories of mechanics, In Handbuch der Physik. Berlin-Heidelberg-New-York: Springer 1965.Google Scholar
  221. T 3.
    — Continuum Mechanics II. The rational mechanics of materials. International Science Review Series 8. New York-London-Paris: Gordon and Breach, Science Publishers, Inc. 1965.Google Scholar
  222. T 4.
    Tung, L. H.: Melt viscosity of polyethylene at zero shear. J. Polymer Sci. 46, 409–422 (1960).Google Scholar
  223. U 1.
    Ueberreiter, H., u. H. J. Orthmann: Schmelzviskosität und Fließmechanismus homologer Polyäthylene. Kolloid-Z. 126, 140–149 (1952).Google Scholar
  224. V 1.
    Vinogradov, G. V., I. M. Belkin u. I. V. Konjuch: Methoden zur Untersuchung der rheologischen Eigenschaften der Lösungen und Schmelzen von Polymeren (russ.). J. d. Mendeleev-Gesellschaft (Zurn. vsez. chim. obsc. im. Mendeleeva) 6, 417–421 (1961).Google Scholar
  225. V 2.
    — — u. V. A. Kargin: Elastizität, Schubfestigkeit und stationäres viskoses Fließen in flüssigen Polymeren (russ.). Ber. Akad. Wiss. UdSSR (Dokl. Akad. Nauk. SSSR) 148, 369–372 (1963).Google Scholar
  226. V 3.
    — A. Ja. Malkin, N. V. Prozorovskaya u. V. A. Kargin: Rheologie der Polymere. Temperaturinvariante Beschreibung anomal-zäher Systeme Systeme (russ.). Ber. Akad. Wiss. UdSSR (Doklady) 150, 574–577 (1963).Google Scholar
  227. V 4.
    — M. P. Zabugina, A. A. Konstantinov, I. V. Konjuch, A. Y. Malkin u. N. V. Prozorovskaya: Viskositätsmessungen von Polymeren im kondensierten Zustand mit Rotations-und Kapillarviskosimetern (russ.). Makromol. Verb. Moskau 6, 1646–1650 (1964).Google Scholar
  228. V 5.
    — A. Ja. Malkin, N. V. Prozorovskaya u. V. A. Kargin: Rheologie der Polymeren. Über die Universalität der temperaturinvarianten Beschreibung der Viskosität von Polymeren im kondensierten Zustand (russ.). Ber. Akad. Wiss. UdSSR (Doklady) 154, 890–893 (1964).Google Scholar
  229. V 6.
    — — E. P. Plotnikova u. V. A. Kargin: Über die Thixotropie im zähflüssigen Zustand (russ.). Ber. Akad. Wiss. UdSSR (Doklady) 154, 1421–1424 (1964).Google Scholar
  230. V 7.
    — —Rheologische Eigenschaften von Polymeren in flüssigem Zustand (russ.). J. Angew. Mech. Techn. Phys. 5, 66–74 (1964).Google Scholar
  231. V 8.
    — —Temperature-independent viscosity characteristics of polymer systems. J. Polymer Sci. Part A, 2, 2357–2372 (1964).Google Scholar
  232. V 9.
    — — T. M. Ismailov u. G. A. Ermilova: Rheologische Eigenschaften des Polypropylens (russ.). Chemie-Fasern Moskau 2, 7–11 (1965).Google Scholar
  233. V 10.
    Volkova, N. S., A. S. Dorozin, I. S. Samsonova u. A. A. Konkin: Rheologische Eigenschaften der Schmelze von Polycaprolactam (russ.). Chemie-Fasern, Moskau 2, 40–42 (1966).Google Scholar
  234. V 11.
    Vries, de A. J., et J. Tochon: Le comportement visco-élastique non-linéare des hauts-polymères fondus. Cahier Groupe Fr. Rheol. 98, 173–189 (1961).Google Scholar
  235. V 12.
    — Rhéologie des polymères fondus. Les paramètres viscoélastiques et leur influence sur l’écoulment en régime stationaire. In Proc. Fourth International Congress on Rheology, Part III, S. 321–344 (1965).Google Scholar
  236. W 1.
    Warrick, E. L., W. A. Piccoli, and F. O. Stark: Melt viscosities of dimethylsiloxanes. J. Am. Chem. Soc. 77, 5017–5018 (1955).Google Scholar
  237. W 2.
    Westover, R. F.: Effect of hydrostatic pressure on polyethylene melt rheology. SPE Techn. Papers, 16th Ann. Techn. Conf. 6, 80-1/80-5 (1960). SPE Trans. 1, 14 (1961).Google Scholar
  238. W 3.
    Weymann, H. D.: On the whole theory of viscosity compressibility and expansivity of liquids. Kolloid-Z. 181, 131–137 (1962).Google Scholar
  239. W 4.
    Wilkinson, W. L.: Non-Newtonian fluids. London: Pergamon Press 1960.Google Scholar
  240. W 5.
    Williams, M. L., R. F. Landel, and J. D. Ferry: The temperature dependence of relaxation mechanismus in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).Google Scholar
  241. W 6.
    The temperature dependence of mechanical and electrical relaxations in polymers. J. Phys. Chem. 59, 95–96 (1955).Google Scholar
  242. Y 1.
    Yamanouchi, S., u. K. Yasuno: Fließverhalten von Polypropylen (japan.). J. Chem. Soc. Japan, Ind. Chem. Sect. 66, 1468–1471 (1963).Google Scholar
  243. Z 1.
    Zacharenko, U. V., F. S. Tolstuchina u. G. U. Bartenev: Über das Fließen kautschukähnlicher Polymerer und ihrer Rußmischungen (russ.). Kolloid-J. (Moskau) 22, 168–175 (1960); Übers. in Rubber Chem. Technol. 35, 326–334 (1962).Google Scholar
  244. Z 2.
    Zahler, G. G., and G. R. Murfitt: High shear capillary rheometer. Brit. Plastics 36, 698–701 (1963).Google Scholar
  245. Z 3.
    Zeibig, H.: Einfluß der Reibungswärme auf die Zähigkeitsuntersuchung im Couette-Viskosimeter. Rheol. Acta 1, 296–299 (1958).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • V. Semjonow
    • 1
  1. 1.Deutsches Kunststoff-InstitutDarmstadt

Personalised recommendations