Advertisement

Metalle pp 473-582 | Cite as

Geschmolzene Metalle und Legierungen, Struktur und Eigenschaften

  • S. Steeb
Conference paper
Part of the Fortschritte der Chemischen Forschung book series (TOPCURRCHEM, volume 10/4)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abowitz, G., and R. B. Gordon: Internal Friction in Liquid Metals. Mercury and Mercury-Thallium-Alloys. Acta Met. 10, 671–680 (1962).CrossRefGoogle Scholar
  2. 2.
    Abrahams, S. C.: Goniometer-mounted Evacuated Furnace for Single Crystal Neutron Diffractometry. Rev. Sci. Instr. 34, 113 (1963).CrossRefGoogle Scholar
  3. 3.
    Addison C. C., J. M. Coldrey, and W. D. Halstead: Liquid Metals, Part 6. The Surface Tension of Solutions of Ba and Ca in Liquid Na. J. Chem. Soc. 3868–3883 (1962).Google Scholar
  4. 4.
    -, D. H. Kerridge, and J. Lewis: The Surface Tension of Liquid Na. J. Chem. Soc. 2861 (1954).Google Scholar
  5. 5.
    -, and R. J. Pulman: Liquid Metals, Part 7. The Density of Liquid Barium. J. Chem. Soc. 3873–3876 (1962).Google Scholar
  6. 6.
    Alekseev, N. V., and A. M. Evseev: Investigation of the structure of liquid Cd-Sn alloys. Kristallografiya 4, 348 (1959) bzw. Soviet Phys.-Cryst. (English Transl.) 4, 323 (1960).Google Scholar
  7. 7.
    -, and Ya. J. Gerasimov: Study of the structure of liquid Bi-Sn alloys. Dokl. Akad. Nauk SSSR 121, 488–491 (1958) bzw. Proc. Acad. Sci. USSR, Phys. Chem. Sect. (English Transl.) 121, 521 (1958).Google Scholar
  8. 8.
    —, u. A. M. Evseev: Untersuchung der Struktur der flüssigen Legierungen in In2Bi und InBi; Dokl. Akad. Nauk. SSSR 129, 563 (1959).Google Scholar
  9. 9.
    Andreev, A. A., and A. R. Regel: Hall Coefficient of Liquid Alloys of HgTl. Soviet Phys.-Solid State (English Transl.) 7, 2076 (1966).Google Scholar
  10. 10.
    Animalu, A. O. E., and V. Heine: The screened Model Potential for 25 Elements. Phil. Mag. 12, 1249 (1965).Google Scholar
  11. 11.
    Arakawa, K.: On the free volume theory of liquid. J. Phys. Soc. Japan 9, 647 (1954).CrossRefGoogle Scholar
  12. 12.
    Ascarelli, P., and Y. Caglioti: Accurate Measurements of Structure Factors of Liquids by Slow-Neutron Spectrometry. II Nuovo Cimento 43, 375–388 (1966).Google Scholar
  13. 13.
    Ashcroft, N. W., and L. J. Guild: The Resistivity of Liquid Aluminium. Phys. Letters 14, 23 (1965).CrossRefGoogle Scholar
  14. 14.
    Bacon, G. E.: Neutron Diffraction. Oxford: Clarendon Press 1955.Google Scholar
  15. 15.
    Baikowa, A. A.: Struktur und Eigenschaften flüssiger Metalle. Akademie der Wissenschaften der UdSSR, Institut für Metallurgie, Moskau 1959 (russisch).Google Scholar
  16. 16.
    Ball, D. L.: Deviation from the normal Fusion curve (Druck-Temp. Diagramme des Schmelzpunkts, Te, Pb-Te, Bi-Te, Sb-Te). S. 353 in (267).Google Scholar
  17. 17.
    Ballentine, L. E.: Calculation of the electronic structure of Liquid Metals. Canad. J. Phys. 44, 2533 (1966).Google Scholar
  18. 18.
    -: Remarks on the calculation of the resistivity of liquid metals. Proc. Phys. Soc. (London) 89, 689 (1966).CrossRefGoogle Scholar
  19. 19.
    Balva, O. M., and G. J. Sobolev: Device for the simultaneous determination of the viscosity and the electrical conductivity of slags at high temperatures. Zavodsk. Lab. 31, 125 (1965).Google Scholar
  20. 20.
    Bannerjee, K.: Röntgenuntersuchung an flüssigem Na-K. Indian J. Phys. 3, 399 (1929).Google Scholar
  21. 21.
    Bartenev, G. M.: The Quasi-Eutectic Structure of a liquid Eutectic. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 138–140 (1961).Google Scholar
  22. 22.
    -: Über die Struktur von flüssigen eutektischen Legierungen. S. 93 in: Struktur und Eigenschaften flüssiger Metalle. Akademie der Wissenschaften der UdSSR, Institut für Metallurgie, Moskau 1959.Google Scholar
  23. 23.
    -, u. J. N. Nikonowa: Einige Besonderheiten der Zustandsdiagramme binärer Eutektika im Zusammenhang mit dem Bau flüssiger Eutektika. Dokl. Akad. Nauk SSSR, Met. i Toplivo 3, 131 (1961).Google Scholar
  24. 24.
    Bauer, G., and F. Sauerwald: The Classification of molten metals and alloys. Part 5. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Nat. Reihe 10, 1029–1067 (1961).Google Scholar
  25. 25.
    Bayanov, A. P., and V. V. Serebremikov: Distribution of erbium in the molten systems Al-Cd, Al-Pb, Al-Bi. Zh. Fiz. Khim 39, 2816 (1965).Google Scholar
  26. 26.
    Belaschenko, D. K.: Structure of Liquid Eutectics (Bi-Cd). Zh. Fiz. Khim. 6, 1331–1337 (1965).Google Scholar
  27. 27.
    -Kinetic Properties of Liquid Metallic Alloys. S. 55 in (476).Google Scholar
  28. 28.
    -: Viskose und elektrische Eigenschaften von flüssigen binären Legierungen und ihr Zusammenhang mit der Struktur der Flüssigkeit (Cd-Sb, Pb-Te, Bi-Te, Sb-Sn, Cd-Cu). Zh. Fiz. Khim. 31, 2269 (1957).Google Scholar
  29. 29.
    -: Viskosität und elektrischer Widerstand in flüssigen Legierungen von Cd-Cu. Zh. Fiz. Khim. 32, 825 (1958).Google Scholar
  30. 30.
    Belyaev, A. I.: Investigation of molten metals with γ-Radiation. Izv. Metallurgiya 39–42 (1961).Google Scholar
  31. 31.
    Benkirane, M., et J. Robert: Étude de la résistivité des amalgames d'indium à l'état solide et en phase liquid. Compt. Rend. 264, 470 (1967).Google Scholar
  32. 32.
    Bernal, J. D.: A geometrical approach to the structure of liquids. Nature 183, 141 (1959).Google Scholar
  33. 33.
    -: Geometry of the Structure of monatomic liquids. Nature 185, 68 (1960).Google Scholar
  34. 34.
    -The Geometry of the Structure of Liquids. S. 25 in (267).Google Scholar
  35. 35.
    -: The structureof liquids. Proc. Roy. Soc. A (London) Ser. 280, 299–322 (1964)Google Scholar
  36. 36.
    -, and J. Mason: Coordination of randomly packed spheres. Nature 188, 910 (1960).Google Scholar
  37. 37.
    Bewilogua, L.: Über die inkohärente Streuung der Röntgenstrahlen. Phys. Z. 32, 740 (1931).Google Scholar
  38. 38.
    Bezirganyan, P. A.: X-Ray Scattering in Liquids. Soviet Phys.-Tech. Phys. (English Transl.) 9, 1282 (1965).Google Scholar
  39. 39.
    -: X-Ray Scattering in Gases, Liquids and Amorphous Bodies. Zh. Tekhn. Fiz. 32, 753–758 (1962) bzw. Soviet Phys.-Tech. Phys. (English Transl.) 7, 549 (1962).Google Scholar
  40. 40.
    Black, P. J., and J. A. Cundall: The structures of liquid mercury and liquid aluminium. Acta Cryst. 19, 807 (1965).CrossRefGoogle Scholar
  41. 41.
    --: The structure of Liquid Al-Fe Alloys. Acta Cryst. 20, 417 (1966).CrossRefGoogle Scholar
  42. 42.
    Boedtker, O. A., R. Conley la Force, W. B. Kendall, and S. F. Ravitz: Melting of Gallium. Trans. Faraday Soc. 61, 665 (1965).CrossRefGoogle Scholar
  43. 43.
    Böhm, L., u. M. Kahlweit: Über die Kinetik der Phasenbildung bei der Entmischung binärer metallischer Schmelzen. Z. Physik. Chem. 49, 147 (1966).Google Scholar
  44. 44.
    Boiko, B. T., L. S. Palatnik, and N. I. Rod'kina: Electron Diffraction Analysis of the Structure of superheated and supercooled molten metals. Phys. Metals Metallogr. (USSR) (English Transl.) 13, 70 (1962). (s. auch Fiz. Metal. Metalloved. 13, 555 (1962)).Google Scholar
  45. 45.
    Bokareva, N.M., T.L. Gotgil'f, K.I. Eretnov, L.A. Koledov, and A. P. Lyubimov. Viscosity of Tin and its alloys with Ni. Chernaya Met. 9, 8–12 (1965).Google Scholar
  46. 46.
    Bokshtein, B. S., D. K. Belaschenko, and A. A. Zhukhovitskii: On the Electrodiffusional Potential in Metals. S. 191 in (476).Google Scholar
  47. 47.
    Bosio, L., and A. Defrain: Formation of metastable solid phases of Ga. J. Chim. Phys. 61, 859–863 (1964).Google Scholar
  48. 48.
    --et I. Epelboin: Sur la Surfusion du Bismuth. Compt. Rend. 253, 2343–2345 (1961).Google Scholar
  49. 49.
    Boyd, R. N., and H. R. Wakeham: The Effect of Temperature on the Structure of Mercury. J. Chem. Phys. 7, 958 (1939).CrossRefGoogle Scholar
  50. 50.
    Bradley, C. C.: The Effect of Pressure on the Resistivity and Thermoelectric Power of Liquid Hg-In Alloys. Phil. Mag. 14, 953–960 (1966).Google Scholar
  51. 51.
    -: The Experimental Determination of the Thermoelectric Power in Liquid metals and alloys. Phil. Mag. 7, 1337–1347 (1962).Google Scholar
  52. 52.
    -, T. E. Faber, E. G. Wilson, and J. M. Ziman: A Theory of the Electrical Properties of Liquid Metals, II. Polyvalent Metals. Phil. Mag. 7, 865 (1962).Google Scholar
  53. 53.
    Bredov, M. M.: Use of Neutron Spectroscopy for Investigating Physical Properties of Elements in Solid and Liquid States. S. 195 in (476).Google Scholar
  54. 54.
    Breitling, G., u. H. Richter: Struktur von geschmolzenem Au und von flüssigem Hg nach der Methode der Trennung der Streuanteile; Z. Physik 172, 338 (1963).CrossRefGoogle Scholar
  55. 55.
    -, D. Handtmann u. H. Richter: Verschiedene Verfahren zur Untersuchung der Struktur geschmolzener Metalle; Z. Physik 178, 294 (1964).CrossRefGoogle Scholar
  56. 56.
    Brözel, R., D. Handtmann u. H. Richter: Struktur des geschmolzenen Zinns bei verschiedenen Temperaturen. Naturwissenschaften 49, 129 (1962).CrossRefGoogle Scholar
  57. 57.
    ---: Temperaturabhängigkeit der Struktur einatomiger Metallschmelzen. Z. Physik 168, 322–332 (1962).CrossRefGoogle Scholar
  58. 58.
    Broyles, A. A., S. U. Chung, and H. L. Sahlin: Comparison of Radial Distribution Functions from Integral Equations and Monte Carlo. J. Chem. Phys. 37, 2462 (1962).CrossRefGoogle Scholar
  59. 59.
    -, H. L. Sahlin, and D. D. Carley: Radial Distribution Functions for Long-Range Forces. Phys. Rev. Letters 10, 319 (1963).CrossRefGoogle Scholar
  60. 60.
    Bublik, A. J.: Electron Diffraction study of the structure of thin films of molten tin. Kristallografiya 2, 240 (1957).Google Scholar
  61. 62.
    -u. A. G. Buntar: Untersuchung von geschmolzenem Al und Bi. Fiz. Metal. Metalloved. 5, 53 (1957).Google Scholar
  62. 63.
    --: Electron Diffraction Study of the Structure of liquid metals and alloys. Sov. Phys.-Cryst. (English Transl.) 3, 31 (1958).Google Scholar
  63. 64.
    --: Electron diffraction study of the structure of Al-Sn. Fiz. Metal. i Metal-loved. 6, 692 (1958).Google Scholar
  64. 65.
    --, and N. P. Gayevaia: Structure of Bi-Sn by electron diffraction. Uchenye Zapiski Khar'kov Gosudarst. Univ. 98, Trud. Fiz. otd. fiz. mat. fak., 7, 251 (1958).Google Scholar
  65. 66.
    Budde, J., K. Fischer, W. Menz, and F. Sauerwald: Viscometry 14: Probable values of the viscosity of liquid melts of Sn, Pb, Bi and K. Z. Physik. Chem. Leipzig 218, 100–107 (1962).Google Scholar
  66. 67.
    -, u. F. Sauerwald: Die Viskosität der schmelzflüssigen Entmischungssysteme Pb-Zn und Bi-Zn. Ermittlung von Mischungslücken mit Viskositätsmessungen. Z. Physik. Chem. Leipzig 230, 42–47 (1965).Google Scholar
  67. 68.
    Busch, G., and H. J. Güntherodt: Hall Coefficient, Electrical Resistivity and the Nature of Electron States in Liquid alloys of monovalent noble metals. Liquid metal conference, Brookhaven Nat. Lab. 1966. Published in Advances in Physics (Phil. Mag. Supplement) 16, 651 (1967).Google Scholar
  68. 69.
    --Bragg reflection of electrons in liquid alloys. Phys. Letters (1967).Google Scholar
  69. 70.
    Buschert, R. L., I. G. Geib, and K. Lark Horovitz: Structure of molten In-Sb. Bull. Am. Phys. Soc. 1, 111 (1956).Google Scholar
  70. 71.
    Cahill, J. A., and A. D. Kirschenbaum: The surface tension of liquid uranium from its melting point 1406 to 1850°K. J. Inorg. Nucl. Chem. 27, 73 (1965).CrossRefGoogle Scholar
  71. 72.
    --: The Density of liquid Bismuth from its melting point to its normal boiling point and an estimate of its critical constants; J. Inorg. Nucl. Chem. 25, 501–506 (1963).CrossRefGoogle Scholar
  72. 73.
    -, The Surface tension of liquid tin between its melting point and 2100°K. J. Inorg. Nucl. Chem. 26, 206 (1964).CrossRefGoogle Scholar
  73. 74.
    Campbell, J. A., and J. H. Hildebrand: The structure of Liquid Xenon. J. Chem. Phys. 11, 334 (1943).CrossRefGoogle Scholar
  74. 75.
    Carlson, Ch. M., H. Eyring, and T. Kee: Significant Structure in Liquids, V. Thermodynamic and Transport Properties of molten metals. Proc. Natl. Acad. Sci. U.S. 16, 333 (1960).Google Scholar
  75. 76.
    Catterall, J. A., and J. Trotter: The soft X-Ray L23 Emission Spectrum from Liquid Aluminium. Phil. Mag. 8, 897 (1963).Google Scholar
  76. 77.
    Cavalier, G.: Measurements of the viscosity of undercooled molten metals. S. 4 D in Nat. Phys. Lab. Symp. No. 9. London: Her Majesty's Stationary Office 1959.Google Scholar
  77. 78.
    Chadwick, G. A.: Eutectic Solidification. S. 326 in (267).Google Scholar
  78. 79.
    Chalmers, B.: Dynamic Nucleation. S. 308 in (267).Google Scholar
  79. 80.
    Chamberlain, O.: Neutron Diffraction in Liquid Sulfur, Lead, and Bismuth. Phys. Rev. 77, 305 (1950).CrossRefGoogle Scholar
  80. 81.
    Chodov, S. L.: Die Ultraschallgeschwindigkeit in Schmelzen binärer metallischer Systeme von eutektischem Typ und ihre elastischen Eigenschaften. Fiz Metal, i Metalloved. 10, 772 (1960).Google Scholar
  81. 82.
    Clayton, G. T., and L. Heaton: Neutron Diffraction Study of Krypton in the Liquid State. Phys. Rev. 121, 649 (1961).CrossRefGoogle Scholar
  82. 83.
    Campton, A. H., and S. K. Allison: X-Rays in Theory and Experiment. New York: D. van Nostrand Comp. 1949.Google Scholar
  83. 84.
    McCormack, J. M., J. R. Myers, and R. K. Saxer: Vapour pressure of liquid copper. J. Chem. Eng. Data 10, 319 (1965).CrossRefGoogle Scholar
  84. 85.
    Cornell, D. A.: Structure Study of Liquid Gallium and Mercury by Nuclear Magnetic Resonance. Phys. Rev. 153, 208 (1967).CrossRefGoogle Scholar
  85. 85a.
    Cowley, J. M.: An approximate theory of order in alloys. Phys. Rev. 77, 669 (1950).CrossRefGoogle Scholar
  86. 86.
    Coy, W. J., and R. S. Mateer: Density of Molten Al by Maximum Bubble pressure method. Trans. Am. Soc. Metals 58, 99 (1965).Google Scholar
  87. 87.
    Cromer, D. T., J. T. Waber: Scattering Factors Computed from Relativistic Dirac-Slater Wave Functions. Acta Cryst. 18, 104 (1965).CrossRefGoogle Scholar
  88. 88.
    Curien, H.: X-Ray Study of the structure of liquids. J. Chim. Phys. 61, 92–96 (1964).Google Scholar
  89. 89.
    Cusak, N.: A Note on the Viscosity and Resistivity of liquid Gallium. Proc. Phys. Soc. (London) 75, 309–311 (1960).CrossRefGoogle Scholar
  90. 90.
    Cusack, N. E., P. W. Kendall, and A. S. Marwaha: Electron Transport Properties in Liquid Ga. Phil. Mag. 7, 1745 (1962).Google Scholar
  91. 91.
    Dahler, J. S., and J. O. Hirschfelder: Improved Free-Volume Theory of Liquids. J. Chem. Phys. 25, 249 (1956); 32, 330 (1960).CrossRefGoogle Scholar
  92. 92.
    Damm, R., u. E. Wachtel: Magnetische Messungen und kinetische Versuche an flüssigen Wismut-Mangan-Legierungen. Forschungsber. Landes Nordrhein-Westfalen 1448 (1965).Google Scholar
  93. 93.
    Danilov, B.L.: Streuung von Röntgenstrahlen in Flüssigkeiten. Dnjepopetrowsk 1935, 137 S., 62 Lit.Google Scholar
  94. 94.
    Danilov, V. I., u. I. V. Radchenko: Struktur von geschmolzenen Bi-Sn-und Sn-Zn-Legierungen. Phys. Z. Sowjetunion 12, 756 (1937).Google Scholar
  95. 95.
    Danilova, A. I., and V. I. Danilov: X-Ray Investigation of Liquid Alloys. Methodology. Bi-Pb Alloy. Probl. Metalloved. i Fiz. Metal. 2, 31–47 (1951).Google Scholar
  96. 96.
    Davis, M. V., and D. T. Hauser: Thermal Neutron Data for the Elements. Nucleonics 16, 87 (1958).Google Scholar
  97. 97.
    Debye, P., u. H. Menke: Bestimmung der inneren Struktur von Flüssigkeiten mit Röntgenstrahlen. Phys. Z. 31, 797 (1930).Google Scholar
  98. 98.
    --: Untersuchung der molekularen Ordnung in Flüssigkeiten mit Röntgenstrahlen. Erg. techn. Röntgenkunde 2, 1 (1931).Google Scholar
  99. 99.
    Desai, R. C.: Atomic motions in monatomic fluids. Report NYO-3326-13; Juni 1966.Google Scholar
  100. 100.
    Desjardins, M.: Etude structurale des Metaux fondus par diffusion des rayons X. CEA Bibliographie 54, 1965.Google Scholar
  101. 101.
    Döge, G.: Über die Bestimmung der Atomvolumina und Ausdehnungskoeffizienten in einigen flüssigen Pb-Sn-Legierungen durch Messung der γ-Strahlungs-Absorption. Z. Naturforsch. 21a, 266 (1966).Google Scholar
  102. 102.
    -, u. K. H. Standke: Die Diffusion von 210Pb und 210Bi in zwei flüssigen Pb-Sn-Legierungen. Z. Naturforsch. 22a, 62 (1967).Google Scholar
  103. 103.
    Downie, D. B.: Thermodynamic and Structural Properties of Liquid Zn-Cu-Alloys. Acta Met. 12, 875 (1964).CrossRefGoogle Scholar
  104. 104.
    Dubinin, E. I., O. A. Yesin, and N. A. Vatolin: Magnetic investigation in the liquid and solid systems Fe-Si, Fe-P and Mn-Si Phys. Metals Metallogr. (USSR) (English Transl.) 14, 114 (1962).Google Scholar
  105. 105.
    Dutchak, Ya. I.: X-Ray Investigation of the Structure of Aluminium in the liquid state. Kristallografiya 6, 124 (1961).Google Scholar
  106. 106.
    -: Coordination Number and Structure of liquid metals. Fiz. Metal. i Metal-loved. 9, 888 (1960) bzw. Phys. Metals Metallogr. (USSR) (English Transl.) 9, 80 (1960).Google Scholar
  107. 107.
    -: Structure of liquid Antimony. Fiz. Metal. i Metalloved. 9, 314 (1960) bzw. Phys. Metals Metallogr. (USSR) (English Transl.) 9, 139 (1960).Google Scholar
  108. 108.
    -: On the short Range order and properties of liquid Bi. Fiz. Metal. i Metal-loved. 11, 290 (1961) bzw. Phys. Metals Metallogr. (USSR) (English Transl.) 11, 133 (1961).Google Scholar
  109. 109.
    -: X-Ray investigation of the short range order in Sn-Bi alloys in the liquid state. Ukr. Fiz. Zh. 4, 504 (1959).Google Scholar
  110. 110.
    -, and M. M. Klym: Atomic Arrangement in Complex molten Eutectic Alloys. Phys. Metals Metallogr. (USSR) (English Transl.) 19, 1, 128 (1965).Google Scholar
  111. 111.
    --: X-Ray Diffraction Study of a Liquid In-Bi Alloy. Russ. J. Phys. Chem. (Engl. Transl.) 39, 403 (1965).Google Scholar
  112. 112.
    --: On the Character of Atom's Distribution in the Complex Eutectic Alloys in a Liquid State (In-Bi). Fiz. Metal. i Metalloved. 19, 137 (1965).Google Scholar
  113. 113.
    --: Viscosity of some complex metal liquids. Ukr. Fiz. Zh. 7, 217 (1962).Google Scholar
  114. 114.
    --: Über die Struktur und Eigenschaften der Legierung In2Bi im flüssigen Zustand. Fiz. Metal. i Metalloved. 14, 787–789 (1962).Google Scholar
  115. 115.
    -and O. G. Mikalaiehuk: On the problem of the Structure of metals in the liquid state. Dopov. ta povid. L'vivs'k. Univ. 9. issue, part 2, 31–33 (1961).Google Scholar
  116. 116.
    -, M. M. Klym: On the short range order and properties of simple melts. Visnik L'vivs'k. Univ. Ser. Fiz. No. 1 (8), 138–140 (1962).Google Scholar
  117. 117.
    -, and M. M. Klym: X-Ray Analysis of the structure of certain liquid metals. Fiz. Metal. i Metalloved. 14, 548–554 (1962).Google Scholar
  118. 118.
    -, and P. V. Panasyuk: Viscosity and Electrical Conductivity of the eutectic Alloy Sb-Cu. Fiz. Metal. i Metalloved. 18, 155 (1964).Google Scholar
  119. 119.
    -, V. Ya. Prokhorenko, M. M. Klym u. K. E. Gadzvich: Über Struktur und elektrische Eigenschaften der Legierungen der Systeme Ga-In und Ga-Sn im Bereich des Schmelzens und im flüssigen Zustand. Fiz. Tverd. Tela Moskva 8, 598–599 (1966).Google Scholar
  120. 120.
    ---: Structure and Thermoelectric properties of the Bi-Cd System in the solid and liquid state. Soviet Phys.-Solid. State (English Transl.) 7, 1595 (1965).Google Scholar
  121. 121.
    -, and O. P. Stetskiv: Thermoel. properties of some metals and alloys in the liquid state. Fiz. Metal. i Metalloved. 22, 123 (1966).Google Scholar
  122. 122.
    --u. I. P. Kljus: Über den Halleffekt und die thermoelektrischen Eigenschaften verschiedener Metalle und Legierungen im flüssigen Zustand. Fiz. Tverd. Tela, Moskva 8, 575 (1966).Google Scholar
  123. 123.
    Duwez, P., and R. H. Willens: Rapid Quenching of Liquid Alloys. Trans. Met. Soc. AIME 227, 362 (1963).Google Scholar
  124. 124.
    Eadumkin, S. N.: Zur statistischen Elektronentheorie der Oberflächenenergie binärer metallischer Lösungen. Izv. Akad. Nauk SSSR., Otd. Tekhn. Nauk, Met. i Toplivo S. 163 (1961).Google Scholar
  125. 125.
    Eckstein, B.: A Disorder Model of Melting and Melts. phys. stat. sol. 20, 83 (1967).Google Scholar
  126. 126.
    Edwards, S. F.: The electronic structure of liquid metals. Proc. Roy. Soc. (London) Ser. A 267, 518 (1962).Google Scholar
  127. 127.
    -: The Electronic structure of Liquid Metals. Phil. Mag. 6, 617 (1961).Google Scholar
  128. 128.
    Egan, J. J.: Thermodynamik von flüssigen Mg-Bi-Legierungen. Acta Met. 7, 560 (1959).CrossRefGoogle Scholar
  129. 129.
    Egelstaff, P. A.: Microscopic transport phenomena in liquids. Rept. Progr. Phys. 29, 333 (1966).CrossRefGoogle Scholar
  130. 130.
    -: Untersuchung des festen und flüssigen Zustands mit kalten Neutronen. Brit. J. Appl. Phys. 10, 1 (1959).CrossRefGoogle Scholar
  131. 131.
    -, C. Duffill, V. Rainey, J. E. Enderby, and D. M. North: The Structure Factor for Liquid Metals at Low Angles. Phys. Letters 21, 3 (1966).CrossRefGoogle Scholar
  132. 132.
    Ehrenfest, P.: On Interference phenomena to be expected when X-Rays pass through a diatomic gas. Proc. Acad. Sci. Amsterdam A, 1184 (1914).Google Scholar
  133. 133.
    Eisenstein, A., and N. S. Gingrich: The diffraction of X-Rays by argon in the liquid, vapor and critical regions. Phys. Rev. 62, 261 (1942).CrossRefGoogle Scholar
  134. 134.
    Elliott, J. A., H. E. Hall, and D. St. P. Bunburg: Study of Liquid diffusion by Mössbauer absorption and Rayleigh scattering. Proc. Phys. Soc. (London) 89, 595–612 (1966).CrossRefGoogle Scholar
  135. 135.
    Enderby, J. E., and N. H. March: Electron Theory of melting in close-packed metals. Proc. Phys. Soc. (London) 88, 717 (1966).CrossRefGoogle Scholar
  136. 136.
    --: Interatomic Forces and the structure of liquids. Advan. Phys. 14, 453 (1965).CrossRefGoogle Scholar
  137. 137.
    -, D. M. North, and P. A. Egelstaff: The Partial Structure Factors of Liquid Cu-Sn. Phil. Mag. 14, 961 (1966).Google Scholar
  138. 138.
    -, and L. Walsh: Electrical properties of some liquid semiconductors. Phil. Mag. 14, 991 (1966).Google Scholar
  139. 139.
    Endo, H.: The Temperature Dependence of the Resistivity of Liquid Alkali Metals at constant volume. Phil. Mag. 8, 1403 (1963/11).Google Scholar
  140. 140.
    Entwistle, K. M.: The internal Friction of metals. Metallurgical Rev. 7, 175 (1962).Google Scholar
  141. 141.
    Epstein, N., and M. J. Young: Random Loose Packing of Binary Mixtures of Spheres. Nature 196, 885 (1962).Google Scholar
  142. 142.
    Eremenko, V. N.: Surface Tension of Liquid Metals. Ukr. Khim. Zh. 28, 427–440 (1962).Google Scholar
  143. 143.
    -, V. I. Nischtschenko, H. I. Lebi u. B. B. Bosatrenko: Oberflächenspannung flüssiger Legierungen binärer metallischer Systeme mit Maxima auf den Liquiduskurven. Ukr. Khim. Zh. 28, 500 (1962).Google Scholar
  144. 144.
    --u. Yu. V. Naiditsch: Oberflächenspannung der Schmelzen einiger intermetallischer Verbindungen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo. S. 150 (1961).Google Scholar
  145. 145.
    Esin, O. A., and I. T. Sryvalin: Connection Between Thermodynamic Properties of Metallic Alloys and State Diagrams. S. 6 in 476.Google Scholar
  146. 146.
    Evseev, A. M.: Relative Verteilungsfunktionen und die Struktur von Flüssigkeiten. Zh. Fiz. Khim. 38, 2706 (1964).Google Scholar
  147. 147.
    Eyring, H., and T. Ree: Significant liquid structures. Vacancy theory of liquids. Proc. Natl. Acad. Sci. U.S. 47, 526 (1961).Google Scholar
  148. 148.
    Faber, T. E.: Optical properties of liquid metals: Proc. Int. Coll. Paris, Sept. 1965. Optical properties and electronic Structure of metals and alloys. Amsterdam: North-Holland Publ. Comp. 1966.Google Scholar
  149. 149.
    -: The Theory of the Electrical Conductivity of Liquid Metals. Advan. Phys. 15, 547–581 (1966).CrossRefGoogle Scholar
  150. 150.
    -: The Resistivity of Dilute Solutions of Magnesium in Lithium in the Liquid and Solid States. Phil. Mag. 15, 1–8 (1967).Google Scholar
  151. 151.
    -, and J. M. Ziman: A theory of the Electrical Properties of Liquid Metals. III. The Resistivity of Binary Alloys. Phil. Mag. 11, 153 (1965).Google Scholar
  152. 152.
    Fessler, R. R., R. Kaplow, and B. L. Averbach: Pair Correlations in Liquid and Solid Aluminium. Phys. Rev. 150, 1, 34–43 (1966).CrossRefGoogle Scholar
  153. 153.
    Filipovich, V. N.: Fouriertransformation der Int.-kurven von Legierungen. Soviet Phys.-Tech. Phys. (English Transl.) 1, 391 (1956).Google Scholar
  154. 154.
    -: The Determination of Interatomic Distances from the Radial Distribution Curves of Scattered X-Rays. Soviet Phys.-Tech. Phys. (English Transl.) 1, 409 (1956).Google Scholar
  155. 155.
    Filippov, L. P.: Beschreibung der Eigenschaften von flüssigen Metallen. Viskositätsbestimmungen von K und Zn. Vestn. Mosk. Univ. 5, 81 (1957).Google Scholar
  156. 156.
    Filippov, E. S., and A. M. Samarin: Determination of the Structure of short Range Order in liquid metal binary alloys. Soviet Phys.-“Doklady” (English Transl.) 10, 1101 (1966).Google Scholar
  157. 157.
    Fisher, I. Z.: Present state of the theory of liquids. Soviet Phys. Uspekhi (English Transl.) 5, 239 (1962).CrossRefGoogle Scholar
  158. 158.
    -Connection Between the Structure of Monatomic Liquids and the Structure of Crystals. S. 22 in (476).Google Scholar
  159. 159.
    Flint, O.: Surface Tension of Liquid Metals. J. Nucl. Mat. 16, 233–248 (1965).CrossRefGoogle Scholar
  160. 160.
    -: Surface Tension by pendant drop Technique. J. Nucl. Mat. 16, 260–270 (1965).CrossRefGoogle Scholar
  161. 160a.
    Flynn, C. P.: Plasma Property of Liquid Metals. J. Appl. Phys. 35, 1641 (1964).CrossRefGoogle Scholar
  162. 161.
    Fort, R. J., and W. R. Moore: Viscosities of Binary Liquid Mixtures. Trans. Faraday Soc. 62, 5 (1966).CrossRefGoogle Scholar
  163. 162.
    Fournet, G.: Über die Struktur von Flüssigkeiten. Handbuch der Physik 32. Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  164. 163.
    Freedman, J. F., and W. D. Robertson: Electrical Resistivity of Liquid Sodium, Liquid Lithium and Dilute Sodium Solutions. J. Chem. Phys. 34, 769–780 (1961).CrossRefGoogle Scholar
  165. 164.
    Frenkel, J. I.: Kinetische Theorie der Flüssigkeiten, S. 138. VEB Deutscher Verlag der Wissenschaften, Berlin (1957).Google Scholar
  166. 165.
    Frost, B. R. T.: Die Struktur von geschmolzenen Metallen. Prog. Metal Phys. V, 96 (1954).CrossRefGoogle Scholar
  167. 166.
    -Intermetallic Forces in Liquid Alloys. Report AERE M/TN 21.Google Scholar
  168. 167.
    Furukawa, K.: The Radial Distribution Curves of Liquids by Diffraction Methods. Rept. Progr. Phys. 25, 395 (1962).CrossRefGoogle Scholar
  169. 168.
    -: A structural model for monatomic liquids including metallic liquids. Nature 184, 1209 (1959).Google Scholar
  170. 169.
    -: The structural Model of Monatomic Liquids Including Metallic Liquids near the Melting Point. Sci. Rept. Res. Inst. Tohoku Univ. 12, 368 (1960).Google Scholar
  171. 170.
    -, B. R. Orton, J. Hamor, and G. I. Williams; The Structure of Liquid Tin. Phil. Mag. 8, 141 (1963).Google Scholar
  172. 171.
    Gamertsfelder, C.: Atomic Distribution in Liquid Elements. J. Chem. Phys. 9, 450 (1941).CrossRefGoogle Scholar
  173. 172.
    Gans, W., u. H. Parthey: Zur Oberflächenspannung des flüssigen Zinns. Z. Metallk. 57, 19–21 (1966).Google Scholar
  174. 173.
    Gebhardt, E., M. Becker u. S. Dorner: Die Dichte von flüssigem Aluminium und einigen Aluminiumlegierungen. Z. Metallk. 44, 573 (1953).Google Scholar
  175. 174.
    ---: Dichte und Viskosität von Schmelzen aus Aluminium und Aluminiumlegierungen. Aluminium 31, 315 (1955).Google Scholar
  176. 175.
    ---: Innere Reibung von flüssigem Al und Al-Legierungen. Z. Metallk. 44, 510 (1953).Google Scholar
  177. 176.
    --u. S. Schäfer: Über die Eigenschaften metallischer Schmelzen. V. Die innere Reibung flüssiger Cu-Sn-Legierungen. Z. Metallk. 43, 292–296 (1952).Google Scholar
  178. 177.
    --u. H. Sebastian: Über die Eigenschaften metallischer Schmelzen. XI. Die innere Reibung flüssiger Mg-Sn-Legierungen. Z. Metallk. 46, 669 (1955).Google Scholar
  179. 178.
    --u. E. Trägner: VI. Die innere Reibung flüssiger Ag-Sn-Legierungen. Z. Metallk. 44, 379–382 (1953).Google Scholar
  180. 178a.
    ---: Die innere Reibung flüssiger Magnesium-Blei-Legierungen. Z. Metallk. 46, 90 (1955).Google Scholar
  181. 179.
    -, u. K. Detering: Die innere Reibung eutektischer Al-Legierungen. Z. Metallk. 50, 379 (1959).Google Scholar
  182. 180.
    -, u. K. Köstlin: Über die Eigenschaften metallischer Schmelzen. XIII. Die innere Reibung von Wismut. Z. Metallk. 48, 601 (1957).Google Scholar
  183. 181.
    --: Sammelbericht über die innere Reibung schmelzflüssiger Metalle und Legierungen. Z. Metallk. 49, 605 (1958).Google Scholar
  184. 182.
    Geisenfelder, H., u. H. Zimmermann: Röntgenographische Strukturuntersuchung der flüssigen Ameisensäure. Ber. d. Bunsenges. Physik. Chem. 67, 63 (1963).Google Scholar
  185. 183.
    Gel'd, P. V., and Yu. M. Gertman: On the Interparticle Interaction in Liquid Alloys of Silicon with Iron and Nickel. S. 181 in (476).Google Scholar
  186. 184.
    -, and P. V. Kocherov: On the Ordering of Liquid Alloys of Calcium with Aluminium. S. 186 in (476).Google Scholar
  187. 185.
    -, V. A. Korshunov, and M. S. Petrushevskii: Several Singularities of the Structure of Liquid Alloys of Silicon with Iron, Manganese and Chromium. S. 171 in (476).Google Scholar
  188. 186.
    -, u. M. S. Petrushevskii: Isothermen der Oberflächenenergie des Si mit Fe. Izv. Akad. Nauk. SSSR., Otd. Tekhn. Nauk, Met. i Toplivo. S. 160 (1961).Google Scholar
  189. 187.
    Gerlach, J., u. B. Leidel: Der Diffusionskoeffizient des Nickels im flüssigen Kupfer. Z. Naturforsch. 22a, 58 (1967).Google Scholar
  190. 188.
    Gerlach, J., F. Heisterkamp, H.-G. Kleist u. K. Mayer: Diffusion in flüssigen Metallen. Metall 20, 1272 (1966).Google Scholar
  191. 189.
    Gingrich, N. S.: X-Ray and Neutron Diffraction Studies of Liquid Structure. S. 172 in (267).Google Scholar
  192. 190.
    -: The Diffraction of X-Rays by Liquid Elements. Rev. Mod. Phys. 15, 90 (1943).CrossRefGoogle Scholar
  193. 191.
    -, and L. Heaton: Structure of Alkali Metals in the Liquid State. J. Chem. Phys. 34, 873 (1961).CrossRefGoogle Scholar
  194. 192.
    -, and R. E. Henderson: The Diffraction of X-Rays by Liquid Alloys of Sodium and Potassium. J. Chem. Phys. 20, 117 (1952).CrossRefGoogle Scholar
  195. 193.
    -, and C. W. Thompson: Atomic Distribution in Liquid Argon near the Triplepoint. J. Chem. Phys. 36, 2398–2450 (1962).CrossRefGoogle Scholar
  196. 194.
    -, and C. N. Wall: The Structure of Liquid Potassium. Phys. Rev. 56, 336 (1939).CrossRefGoogle Scholar
  197. 195.
    Girschovitz, N. G., u. Ya. A. Nechendsi: Isothermen oder Linien gleicher Überhitzung? Met. i Toplivo 3, 140 (1961).Google Scholar
  198. 196.
    Glauberm ann, A. E.: Über die Theorie der Nahordnung in Flüssigkeiten. Zh. Experim. i Teor. Fiz. 22, 249 (1952).Google Scholar
  199. 197.
    Glazov, V. M.: Peculiarities of the Change in the Structure and in the Character of the Chemical Bond of Semiconductors on Melting. S. 101 in (476).Google Scholar
  200. 198.
    -Interaction Between Alloying Components in Liquid Ternary Alloys. S. 112 in (476).Google Scholar
  201. 199.
    -, A. N. Krestovnikov, and N. N. Glagoleva: Investigation of the elt. Conductivity and viscosity of melts in Bi-Se, Bi-Te and Sb-Te systems. Izv. Akad. Nauk SSSR, Neorgan. Mat. 2, 453 (1966).Google Scholar
  202. 200.
    -, u. C. N. Tschischtschjeskaja: Über den Zusammenhang zwischen den Eigenschaften einiger halbleitender chemischer Verbindungen im festen und flüssigen Zustand. Izv. Akad. Nauk, SSSR., Otd. Tekhn. Nauk, Met. i Toplivo. S. 155 (1961).Google Scholar
  203. 201.
    -, and A. A. Vertman: Special Features of the Structure of Liquid Eutectics and the Character of the Viscosity-Constitution Diagrams in the Eutectic-Type Systems. S. 121 in (476).Google Scholar
  204. 202.
    --, E. G. Shvidkovskii: Contribution to Review of the Discussion on Structure and properties of Liquid Metals. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 104–115 (1961).Google Scholar
  205. 203.
    -, and V. N. Vigdorovich: Viscosimetrie of the Kinetics of the Dissociation and Formation of Intermetallic Compounds in Melts. Zh. Fiz. Khim. 33, 2164 (1959).Google Scholar
  206. 203a.
    Glocker, R.: Materialprüfung mit Röntgenstrahlen. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  207. 204.
    -: Röntgenbestimmungen der Atomanordnung in flüssigen und amorphen Stoffen. Ergeb. Exakt. Naturw. 22, 186 (1949).Google Scholar
  208. 205.
    -, u. H. Hendus: Die Atomverteilung in flüssigem Indium, Thallium und Blei. Ann. Physik 43, 513 (1943).Google Scholar
  209. 206.
    -, u. H. Richter: Elektronenstrahleninterferenzen von geschmolzenen Metalllegierungen. Naturwissenschaften 31, 236 (1943).CrossRefGoogle Scholar
  210. 207.
    Golik, A. Z.: On the Connection of Compressibility and Shear Viscosity with the Structure of matter in the liquid state. Ukr. Fiz. Zh. 7, 806 (1962).Google Scholar
  211. 208.
    -, and D. N. Karlikov: On the Relationship of Viscosity Coefficient to the Structure of a Substance in the Liquid State. Dokl. Akad. Nauk SSSR 114, 361 (1957).Google Scholar
  212. 209.
    Golonka, J.: Thermodynamische Eigenschaften von flüssigen Cu-Ag-Legierungen. Arch. Hutnictwa, Warschau 10, 143–165 (1965).Google Scholar
  213. 210.
    McGonigal, P. J.: A Generalized Relation Between Reduced Density and Temperature for Liquids with Special Reference to Liquid Metals. J. Phys. Chem. 66, 1686 (1962).Google Scholar
  214. 211.
    -, A. D. Kirschenbaum, and A. V. Grosse: The Liquid Temperature Range, Density and Critical Constants of Magnesium. J. Phys. Chem. 66, 737 (1962).Google Scholar
  215. 212.
    Goyaga, G. I.: Viskositätsmessungen an Bi-Sn-Legierungen. Vestn. Mosk. Univ., Ser. Mat., Mekhan., Astron., Fiz. i. Khim. 2, 71 (1956).Google Scholar
  216. 213.
    -, and E. P. Belozerova: Electrical Conductivity of Liquid Gallium and Indium. Vest. Mosk. Univ. 13, 133 (1958), Zitat nach Metallurgical Abstracts 28, Spalte 325, (1960/61).Google Scholar
  217. 214.
    Green, H. S.: The molecular Theory of fluids. Amsterdam: North-Holland Publishing Company 1952.Google Scholar
  218. 215.
    Greenfield, A. J.: Hall Coefficients of Liquid Metals. Phys. Rev. 135, 1589 (1964).CrossRefGoogle Scholar
  219. 216.
    -: Experimental Evidence for the Inadequacy of the Basic Formula for the Electrical Resistivity of a Liquid Metal. Phys. Rev. Letters 16, 6 (1966).CrossRefGoogle Scholar
  220. 217.
    Gregorczyk, Z.: Thermodynamische Daten von geschmolzenen Ag-Ti-Legierungen. Roczniki Chem. 34, 621 (1960).Google Scholar
  221. 218.
    Grek, A.: Über den Aufbau und die Eigenschaften flüssiger Metalle. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 120 (1961).Google Scholar
  222. 219.
    Grigorovich, V. K.: The Structure of Liquid Alloys in Connection with Phase Diagrams. (Cu-Ni, Au-Cu, Ag-Au, Cu-Pb) Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 124–129 (1961).Google Scholar
  223. 220.
    -Structure of Liquid Metals in Connection with their Electronic Structure. S. 75 in (476).Google Scholar
  224. 221.
    -Structures of Transition Metals in Liquid State. S. 93 in (476).Google Scholar
  225. 222.
    -: Structure of Liquid Metals in Relation to their Electronic Structure. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 6, 93–109 (1960).Google Scholar
  226. 223.
    van der Grinten, W.: Temperatureinfluß und Verwendung von monochromatischer Strahlung bei der Streuung von Röntgenstrahlen am Tetrachlorkohlenstoffgas. Phys. Z. 34, 609 (1933).Google Scholar
  227. 224.
    Grosse, A. V.: The Temperature Range of Liquid Metals and an Estimate of their Critical Constants. J. Inorg. Nucl. Chem. 22, 23–31 (1961).CrossRefGoogle Scholar
  228. 225.
    -: The Relationship between Surface Tension and Energy of Liquid Metals and their Heat of Vaporization at the Melting Point. J. Inorg. Nucl. Chem. 26, 1349–1361 (1964).CrossRefGoogle Scholar
  229. 226.
    -: The Viscosity of Liquid Metals and an Empirical Relationship between their Activation Energy of Viscosity and their Melting Points. J. Inorg. Nucl. Chem. 23, 333–339 (1961).CrossRefGoogle Scholar
  230. 227.
    -, and A. D. Kirschenbaum: Density of Molten Ni and Fe. J. Inorg. Nucl. Chem. 25, 331 (1963).CrossRefGoogle Scholar
  231. 228.
    -: The Relationship between the Surface Tension and Energies of Liquid Metals and their Critical Temperatures. J. Inorg. Nucl. Chem. 24, 147–156 (1962).CrossRefGoogle Scholar
  232. 229.
    -: An Empirical Relationship between the Electrical Conductivity of Mercury and Temperature over its Entire Liquid Range, also its thermal Conductivity and the Latter's Regular Behaviour. J. Inorg. Nucl. Chem. 28, 803–811 (1966).CrossRefGoogle Scholar
  233. 230.
    -: Electrical and Thermal Conductivity of Metallic K over its Entire Liquid Range. J. Inorg. Nucl. Chem. 28, 795 (1966).CrossRefGoogle Scholar
  234. 231.
    -: The Viscosity of Liquid Plutonium, predicted from a General Relationship between the Activation Energy and Melting Points of Metals, and the Experimental Data. J. Inorg. Nucl. Chem. 25, 137 (1963).CrossRefGoogle Scholar
  235. 232.
    -, J. A. Cahill, and A. D. Kirschenbaum: Density of Liquid Uranium. J. Am. Chem. Soc. 83, 4665 (1961).CrossRefGoogle Scholar
  236. 233.
    -, and A. D. Kirschenbaum: The Temperature Range of Liquid Lead and Silver and an Estimate of their Critical Constants. J. Inorg. Nucl. Chem. 24, 739–748 (1962).CrossRefGoogle Scholar
  237. 234.
    Gubanov, A. I.: Scattering of Electrons in a Liquid Due to Violation of Long Range Order. Soviet Phys. JETP (English Transl.) 3, 854 (1957).Google Scholar
  238. 235.
    Güntherodt, H. J., A. Menth u. Y. Tièche: Hall-Koeffizient, spezifischer elektrischer Widerstand und magnetische Suszeptibilität flüssiger Hg-In-und Ga-Ln-Legierungen. Physik Kondensierten Materie 5, 392 (1966).Google Scholar
  239. 236.
    Guerassimov, J. I., A. V. Nikolskaia et A. M. Evseev: Les propriétés thermodynamiques des quelques alliages métalliques liquides. J. Chim. Phys. 56, 641 (1959).Google Scholar
  240. 237.
    Guinier, A.: Théorie et technique de la radiocristallographie. Paris: Dunod 1964.Google Scholar
  241. 238.
    Gvozdeva, L. I., and A. P. Lyubimov: The Structure of the Liquid Eutectics and the Nature of the Viscosity composition diagram in Eutectic-Type Systems. Sb. Mosk. Inst. Stali i Splavov 41, 161 (1966).Google Scholar
  242. 239.
    Halder, N. C., R. J. Metzger, and C. N. J. Wagner: Atomic Distribution and Electrical Properties of Liquid Mercury-Thallium Alloys. J. Chem. Phys. 45, 1259 (1966).CrossRefGoogle Scholar
  243. 240.
    -, and C. N. J. Wagner: Temperature Dependence of the Structure and Transport Properties of Liquid Thallium. J. Chem. Phys. 45, 482–487 (1966).CrossRefGoogle Scholar
  244. 241.
    --Partial Interference and Atomic Distribution Function of Liquid Ag-Sn Alloys. USAEC., Tech. Rep. Yale-2560-15, 1967.Google Scholar
  245. 242.
    Hanabusa, M., and N. Bloembergen: Nuclear Magnetic Relaxation in Liquid Metals, Alloys and Salts. J. Phys. Chem. Solids 27, 363–375 (1966).CrossRefGoogle Scholar
  246. 243.
    Harasima, A.: Atomic distribution functions of liquids. J. Phys. Soc. Japan 8, 590 (1953).CrossRefGoogle Scholar
  247. 244.
    Harvey, D. J.: Importance of the Surface Tension of Metals in som Engineering Problems. S. 285 in (267).Google Scholar
  248. 245.
    Heaton, Le Roy, and C. W. Tompson: Structure of Na-Cs Alloys with Neutron Diffraction. Acta Cryst. 16, A 85 (1963).Google Scholar
  249. 246.
    Helman, J. S., and W. Baltensberger: The Dielectric Constant of Liquid Metals. Physik Kondensierten Materie 5, 60–72 (1966) bzw. Helv. Phys. Acta 38, 642 (1965).Google Scholar
  250. 247.
    Henderson, D.: The Theory of Liquids and Dense Gases. Ann. Rev. Phys. Chem. 15, 31 (1964).CrossRefGoogle Scholar
  251. 248.
    Hendus, H.: Die Atomverteilung in den flüssigen Elementen Pb, Tl, In, Sn, Au, Ga, Bi, Ge und in flüssigen Legierungen des Systems Au-Sn. Z. Naturforsch. 2A, 505 (1947).Google Scholar
  252. 249.
    -: Die Atomverteilung in flüssigem Quecksilber. Z. Naturforsch. 3A, 416 (1948).Google Scholar
  253. 250.
    -, u. H. K. F. Müller: Das W-K a-Interferenzbild des flüssigen Antimons. Z. Naturforsch. 10a, 254 (1955).Google Scholar
  254. 251.
    Henkels, H. W.: Leitfähigkeit von flüssigem Se (200–500° C). J. Appl. Phys. 21, 725 (1950).CrossRefGoogle Scholar
  255. 252.
    Henninger, E. H., R. C. Buschert, and Le Roy Heaton: Atomic Structure and Correlation in Liquid Binaries by X-Ray and Neutron Diffraction with Application to NaK. J. Chem. Phys. 44, 1758 (1966).CrossRefGoogle Scholar
  256. 253.
    Henshaw, D. G.: Atomic Distribution in Liquid and Solid Neon and Solid Argon by Neutron Diffraction. Phys. Rev. 111, 1470 (1958).CrossRefGoogle Scholar
  257. 254.
    Herczynska, E.: Dichte geschmolzener Metalle und Legierungen; Naturwissenschaften 47, 200 (1960).CrossRefGoogle Scholar
  258. 255.
    Herre, F.: Vergleich berechneter und experimenteller Atomverteilung in Kohlenstoff, Selen und Bortrioxid. Dissertation, T. H. Stuttgart (1956).Google Scholar
  259. 256.
    -, u. H. Richter: Berechnung der Atomverteilungskurven verschiedener Strukturmodelle. Z. Physik 150, 149–161 (1958).CrossRefGoogle Scholar
  260. 257.
    Herrick, C. C.: Vapour Pressure of Liquid In. Trans. Met. Soc. AIME 230, 1439 (1964).Google Scholar
  261. 258.
    Heumann, T., u. B. Predel: Thermodynamische Aktivitäten flüssiger In-Cd-Legierungen und Bildungsenthalpie der intermetallischen Phase InCd3. Z. Metallk. 50, 396 (1959).Google Scholar
  262. 259.
    Hildebrand, J. H.: Liquid Structure and Energy of Vaporization. J. Chem. Phys. 7, 1 (1939).CrossRefGoogle Scholar
  263. 260.
    Hiroike, K.: On the Theory of Fluids. J. Phys. Soc. Japan 13, 1497 (1958).CrossRefGoogle Scholar
  264. 261.
    Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird: Molecular Theory of Gases and Liquids. New York: J. Wiley & Sons 1954.Google Scholar
  265. 262.
    Honda, K.: Magnetic Measurements on Liquid Elements. Sci. Rept. Tohoku Univ. 1, 1 (1912).Google Scholar
  266. 263.
    Hosemann, R., and S. N. Bagchi: Direct Analysis of Diffraction by Matter. Amsterdam: North-Holland Publishing Company 1962.Google Scholar
  267. 264.
    -, u. K. Lemm: Parakristallinität und dreidimensionale Analyse der radialen Dichteverteilung in geschmolzenen Metallen. Conference on Physics of Non-Crystalline Solids, Delft 1964.Google Scholar
  268. 265.
    --u. H. Krebs: Der Abbrucheffekt und sein Einfluß auf die Atomverteilungskurven von amorphen Stoffen und Flüssigkeiten. Z. Physik. Chem. Frankfurt 41, 121 (1964).Google Scholar
  269. 266.
    van Hove, L.: Correlations in Space and Time and Born Approximation Scattering in Systems on Interacting Particles. Phys. Rev. 95, 249 (1954).CrossRefGoogle Scholar
  270. 267.
    Hughes, T. J. (Editor): Liquids. Structure, properties, solid interactions. Proc. Symp. on Liquids, Warren, Michigan 1963. Amsterdam-London-New York: Elsevier Publ. Comp. 1965.Google Scholar
  271. 267a.
    Hultgren, R., N.S. Gingrich, and B.E. Warren: The Atomic Distribution in Red and Black P and the Crystal Structure of black P. J.Chem. Phys. 3, 351 (1935).CrossRefGoogle Scholar
  272. 268.
    Hume-Rothery, W., and E. Anderson: Eutectic Compositions and Liquid Immiscibility in Certain Binary Alloys. Phil. Mag. 5, 383 (1960).Google Scholar
  273. 269.
    -, and G. V. Raynor: The Structure of Metals and Alloys. Inst. Met., London (1954).Google Scholar
  274. 270.
    Hurst, D. G., and D. G. Henshaw: Atomic Distribution in Liquid Helium by Neutron Diffraction. Phys. Rev. 100, 994 (1955).CrossRefGoogle Scholar
  275. 271.
    Illarinov, V. V., u. A. S. Cherepanova: Struktur von flüssigem Sb mit Röntgenbeugung. Dokl. Akad. Nauk SSSR 133, 1086 (1960).Google Scholar
  276. 272.
    Ilschner, B.: Diffusion und Viskosität in Metallschmelzen. Z. Metallk. 57, 194 (1966).Google Scholar
  277. 273.
    International Tables for X-Ray Crystallography, Vol. III. Physical and Chemical Tables. Birmingham, England: K. Lonsdale, Kynoch Press 1962.Google Scholar
  278. 274.
    Isakovich, M. A., and I. A. Chaban: Acoustical Behaviour of Highly Viscous Liquids and Theory of the Liquid State. Sov. Phys. Doklady (English Transl.) 10, 1055 (1966).Google Scholar
  279. 275.
    Ivanov, G. A., and G. D. Koposov: The Electrical Properties of Pure Bismuth and Bi-Sn Alloys over a Wide Temperature Range. Zap. Leningr. Gos. Ped. Inst. 265, 205 (1965).Google Scholar
  280. 276.
    Jackson, K. A.: Nucleation from the Melt. Ind. Eng. Chem. 57, 28–32 (1965).CrossRefGoogle Scholar
  281. 277.
    James, R. W.: The Optical Principles of the Diffraction of X-Rays. London: G. E. Bell & Sons 1950.Google Scholar
  282. 278.
    Janik, J. A.: Cold Neutron Study of the Structure of Liquids. J. Chim. Phys. 61, 97–107 (1964).Google Scholar
  283. 279.
    Jarzynski, J., and T. A. Litovitz: Absorption of Ultra Sound in Na2K (Liquid). J. Chem. Phys. 41, 1290 (1964).CrossRefGoogle Scholar
  284. 280.
    Jena, A. K., and J. S. L. Leach: A Calorimetric Investigation of Liquid Au-Sn Alloys. Acta Met. 14, 1595 (1966).CrossRefGoogle Scholar
  285. 281.
    Jeremenko, W. N., u. G. M. Lukaschenko: Thermodynamische Eigenschaften flüssiger Lösungen im System Mg-Al. Ukr. Khim. Zh. 28, 462–466 (1962).Google Scholar
  286. 282.
    Johnson, M. D., P. Hutchinson, and N. H. March: Ion-Ion Oscillatory Potentials in Liquid Metals. Proc. Roy. Soc. (London) Ser. A 282, 283 (1964).Google Scholar
  287. 283.
    Joshi, M. L.: High Temperature Furnace for X-Ray Diffraction of Liquid Metals. Rev. Sci. Instr. 36, 678 (1965).CrossRefGoogle Scholar
  288. 284.
    -, and C. N. J. Wagner: Atomic Distribution in Molten Ag-Sn Alloys. Z. Naturforsch. 20a, 564 (1965).Google Scholar
  289. 285.
    Kaplow, R., and B. L. Averbach: X-Ray Diffractometer for the Study of Liquid Structures. Rev. Sci. Instr. 34, 579–581 (1963).CrossRefGoogle Scholar
  290. 286.
    -, S. L. Strong, and B. L. Averbach: Radial Density Functions for Liquid Mercury and Lead. Phys. Rev. 138a, 1336 (1965).CrossRefGoogle Scholar
  291. 287.
    ---: Local Order in Liquid Alloys. Office of Naval Research, Contract 1841 (48), Technical Report 6 (1965). Preprint No. 552; Dep. Metallurgy, MIT, Cambridge, Massachusetts.Google Scholar
  292. 288.
    ---: Determination of X-Ray Scattering Factors with Liquid Specimens. Acta Cryst. 19, 1043 (1965).CrossRefGoogle Scholar
  293. 289.
    Karoshaev, A. A., S. N. Zadumkin, and A. I. Kukhno: Surface Tension of Ga and its Temperature Dependence. Zh. Fiz. Khim. 41, 654 (1967).Google Scholar
  294. 290.
    Karlikov, D. N.: X-Ray Investigation of the Short Distance Order of Liquid Cd-Amalgams. Ukr. Fiz. Zh. 2, 43 (1957).Google Scholar
  295. 291.
    -: X-Ray Investigation of the Short Distance Order of Liquid Zn-Amalgams. Ukr. Fiz. Zh. 3, 370 (1958).Google Scholar
  296. 292.
    Kashireninov, O. E., O. A. Osipov, M. A. Panina, and V. N. Marchenko: Magnetic Susceptibility of Binary Liquid Systems. Zh. Obskch. Khim 31, 3504–3509 (1961).Google Scholar
  297. 293.
    Katada, K.: Studies on the Radial Distribution Analysis in Diffraction Methods. J. Phys. Soc. Japan 13, 51 (1958).CrossRefGoogle Scholar
  298. 294.
    Kazakov, N. B., L. A. Pronin, and S. I. Filippov: Acoustic Study of Liquid Sb-Zn Alloys. Izv. Vysshikh Uchebn. Zavedenii, Chernaya Met. 11, 11–15 (1964).Google Scholar
  299. 295.
    Keating, D. T.: Interpretation of the Neutron or X-Ray Scattering from a Liquid-Like Binary. J. Appl. Phys. 34, 923 (1963).CrossRefGoogle Scholar
  300. 296.
    Keesom, W. H., and J. DeSmedt: On the Diffraction of Röntgen-Rays in Liquids. Akademie Wetenschappen, Amsterdam, Proceedings 25, 118 (1922).Google Scholar
  301. 297.
    Khan, A.: Radial Distribution Functions of Liquid Krypton. Phys. Rev. 136, A 1259 (1964).Google Scholar
  302. 298.
    Khokhlov, S. F.: Some Problems pertaining to the Structure of Liquids. S. 10 in (476).Google Scholar
  303. 299.
    -, u. Ye. Z. Spektor: Über Möglichkeiten röntgenographischer Untersuchungen an flüssigen hochschmelzenden Metallen. Fiz. Metal. i Metalloved. 15, 311 (1963).Google Scholar
  304. 300.
    Kim, Y. S., C. L. Stanley, R. F. Kruh, and G. T. Clayton: X-Ray Diffraction of Liquid InHg. J. Chem. Phys. 34, 1464 (1961).CrossRefGoogle Scholar
  305. 301.
    Kirkwood, J. G., V. A. Lewinson, and B. J. Alder: Statistical Theory of Liquids. J. Chem. Phys. 20, 929 (1952).CrossRefGoogle Scholar
  306. 302.
    Kirschenbaum, A. D., and J. A. Cahill: Liquid Density of Yttrium and Some Rare-Earth Fluorides from the Melting Point to ∼2500° K. J. Chem. Eng. Data 7, 98 (1962).CrossRefGoogle Scholar
  307. 303.
    --: The Density of Molten Thorium and Uranium Tetrafluorides. J. Inorg. Nucl. Chem. 19, 65 (1961).CrossRefGoogle Scholar
  308. 304.
    --, and A. V. Grosse: The Density of Liquid Lead from the Melting Point to the Normal Boiling Point. J. Inorg. Nucl. Chem. 22, 33–38 (1961).CrossRefGoogle Scholar
  309. 305.
    ---: The Density of Liquid Silver from its Melting Point to its Normal Boiling Point 2450° K. J. Inorg. Nucl. Chem. 24, 333–336 (1962).CrossRefGoogle Scholar
  310. 306.
    Kleppa, O. J.: Thermodynamic Analysis of Binary Liquid Alloys of Group II B Metals-I. The Systems Zink-Cadmium, Zink-Gallium, Zink-Indium and Zink-Tin. Acta Met. 6, 225 (1958).CrossRefGoogle Scholar
  311. 307.
    -: Thermodynamic Analysis of Binary Liquid Alloys of Group II B, Metals-II. The Alloys of Cadmium with Gallium, Indium, Tin, Thallium, Lead and Bismuth. Acta Met. 6, 233 (1958).CrossRefGoogle Scholar
  312. 308.
    -: Thermodynamic Analysis of Binary Liquid Alloys of Group II B Metals-III. The Solutions of Zn, Cd, In, Tl, Pb, and Bi in Hg. Acta Met. 8, 435 (1960).CrossRefGoogle Scholar
  313. 309.
    -: Thermodynamics and Properties of Liquid Solutions. S. 56 in: Liquid Metals and Solidification, Published by the American Society for Metals, Cleveland, Ohio 1958.Google Scholar
  314. 310.
    Klyachko, Yu. A.: On the Macromolecular Structure of Liquid Metals and on the Interaction between Macromolecules. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 6, 85–87 (1960), s. auch in (476).Google Scholar
  315. 311.
    Kocherov, P. V., and P. V. Gel'd, B. A. Baum: Kinematic viscosity of liquid alloys of the Fe-Si system. Tr. Ural'sk. Politekhn. Inst. 144, 139 (1965).Google Scholar
  316. 312.
    Koledov, L. A.: Magnitude of Elementary Atomic Displacements on Self Diffusion in molten Metals. Fiz. Metal. i Metalloved. 18, 926–929 (1964) bzw. Phys. Metals Metallogr. (USSR) (English Transl.) 18, 117 (1964).Google Scholar
  317. 313.
    Komnik, Yu. F.: Electron Diffraction by liquid metal phases formed by condensation below the melting point. Soviet Phys.-Cryst. (English Transl.) 11, 205 (1966).Google Scholar
  318. 314.
    Kontorova, T. A.: Investigation of liquid In Sb with X-Rays and neutrons. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 157 (1961).Google Scholar
  319. 315.
    -: On the nature of the change in the short range order when melting certain semiconductors. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 157 (1961).Google Scholar
  320. 316.
    Kontrimas, R.: Distribution of metals between liquid Zn and liquid Pb. J. Phys. Chem. 64, 362 (1960).Google Scholar
  321. 317.
    Kora, K.: Structure Analysis by X-Ray Diffraction; in G. R. St. Pierre, Met. Soc. Conf. Vol. 7; Phys. Chem. of Process Metallurgy, Part I; New York, London, Interscience Publishers, 1959.Google Scholar
  322. 318.
    Korolkov, A. M.: Oberflächenspannung flüssiger Metalle und Legicrungen. S. 51 in (15).Google Scholar
  323. 319.
    -: Über den Zusammenhang zwischen den Eigenschaften von Metallen und Legierungen im festen und flüssigen Zustand. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 146 (1961).Google Scholar
  324. 320.
    Korolkov, A. M.: Oberflächenspannung von Aluminium und dessen Legierungen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 2, 35 (1956).Google Scholar
  325. 321.
    -: Viskosität von flüssigen Metallen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 5, 123 (1959).Google Scholar
  326. 322.
    -, u. A. A. Igumnova: Oberflächenspannung intermetallischer Verbindungen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 6, 95 (1961). (Werte für AI, Zn, Cu, Sb, Mg, Cd, Pb, Sn, Te, Bi, Se, Al2Zn3, Al2Cu, AlSb, Al2Mg3, Al3Mg4, Al3Mg2, MgZn2, Mg7Zn3, MgCd2, Mg2Pb, Mg2Sn, SbZn, Sb3Zn, Sb2Zn, Sb2Cd3, Sb2Te3, SbCu2, BiSe, Bi2Se3, Bi2Te3).Google Scholar
  327. 323.
    -, u. D. P. Shashkov: Elektrischer Widerstand einiger flüssiger Legierungen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 1, 84 (1962).Google Scholar
  328. 324.
    Kothari, L. S., K. S. Singwi, and S. Visvanathan: Scattering of Cold Neutrons in liquid metals and the Entropy of Disorder. Phil. Mag. 1, 560 (1956).Google Scholar
  329. 325.
    Kozakévitch, P.: Measurement of the surface tension of metals. Seite 1E in Nat. Phys. Lab. Symp. No. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  330. 326.
    -: Surface Tension of Liquid Metals and Oxide Melts. S. 243 in (267).Google Scholar
  331. 327.
    Kratky, O.: Die Struktur des flüssigen Quecksilbers. Phys. Z. 34, 482 (1933).Google Scholar
  332. 328.
    Kravitz, S., and J. S. Leach: Dilute Solutions in molten Alloys. Acta Met. 14, 1485 (1966).CrossRefGoogle Scholar
  333. 329.
    Krebs, H., M. Haucke, and H. Weyand: Atomic Distribution in Liquid Bi, SnSb and InSb. Aufsatz im Buch: The Phys.-Chemistry of Metallic Solutions and Intermetallic Compounds. National Phys. Lab. Symp. No. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  334. 330.
    Krogh Moe, J.: A Method for converting experimental X-Ray Intensities to an absolute scale. Acta Cryst. 9, 951 (1956).CrossRefGoogle Scholar
  335. 331.
    Kruh, R. F.: Diffraction Studies of the Structure of Liquids. Chem. Rev. 62, 319–346 (1962).CrossRefGoogle Scholar
  336. 332.
    -, G. T. Clayton, C. Head, and G. Sandlin: Structure of liquid mercury. Phys. Rev. 129, 1479 (1963).CrossRefGoogle Scholar
  337. 333.
    Krushchev, B. I., A. M. Bogomolov, and L. S. Sharipova: Diffraction of neutrons on liquid lead. Fiz. Metal. i Metalloved. 22, 279 (1966).Google Scholar
  338. 334.
    Kuhlmann-Wilsdorf, D.: Theory of Melting. Phys. Rev. 140, A 1599 (1965).CrossRefGoogle Scholar
  339. 335.
    Kumar, R.: Structure of liquid Pb-Sn Alloys. Trans. Indian Inst. Metals 131–139 (1965).Google Scholar
  340. 336.
    -: Structure of liquid Alloys. Trans. Indian Inst. Metals 14, 171 (1961).Google Scholar
  341. 337.
    -, and M. Singh: Structure of Liquid Al-Cu Alloys. Symp. Light Metal Ind. India, Jamshedpur, 237–243 (1961).Google Scholar
  342. 338.
    Lachlan, D. M., and L. L. Chamberlain: Atomic vibrations and the melting process in metals. Acta Met. 12, 571 (1964).CrossRefGoogle Scholar
  343. 339.
    Lange, W.: Über einige Zusammenhänge zwischen der Selbstdiffusion und dem Schmelzverhalten von Metallen. Z. Metallk. 57, 653–656 (1966).Google Scholar
  344. 340.
    Lantratof, M. F.: Thermodyn. Eigenschaften in flüssigem Mg-Pb. Zh. Neorgan. Khim. 4, 1415 (1959).Google Scholar
  345. 341.
    Larsson, K. E., U. Dahlborg, and D. Jovic: Collective Atomic Motions in Liquid Aluminium studied by Cold Neutron Scattering. Wien, Int. Atom. Energy Agency 1964.Google Scholar
  346. 342.
    Lashko, A. S.: Röntgenuntersuchung an geschmolzenem K. Ukr. Fiz. Zh. 1, 403 (1956).Google Scholar
  347. 343.
    -: Röntgenographische Bestimmung der Atomverteilung in mehratomigen Flüssigkeiten. Vopr. Fiz. Metal. i Metalloved. 6, 66 (1955).Google Scholar
  348. 344.
    -: The structure of liquid AuSn. Proc. Acad. Sci. USSR 125, 235 (1959).Google Scholar
  349. 345.
    -: Untersuchung flüssiger Sn-Zn-Legierungen mit Röntgenbeugung. Nauk. rabot inst, metallofiz. Akad. Nauk Ukr. SSR 8, 182 (1957).Google Scholar
  350. 346.
    -: X-Ray Investigation of the structure of some liquid metallic systems (Bi-Sn, Sn-Zn, Au-Sn, Al-Ag). Zh. Fiz. Khim. 33, 1730–1738 (1959).Google Scholar
  351. 347.
    -, u. D. N. Karlikov: Die Berechnung der Atomverteilungskurven von Flüssigkeiten, gezeigt am Beispiel von Hg. Vopr. Fiz. Metal. i Metalloved. 9, 198 (1959).Google Scholar
  352. 348.
    -, and A. V. Romanova: Structure of certain metallic liquid alloys. Ukr. Fiz. Zh. 3, 375 (1958).Google Scholar
  353. 349.
    --: Über die röntgenographische Untersuchung flüssiger Legierungssysteme mit Eutektika. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 135 (1961).Google Scholar
  354. 350.
    --: Investigation of the Short Range Order in some liquid binary systems. Nauk rab. Inst. Metallogr. Akad. Nauk Ukr. SSR 10, 150–159 (1959).Google Scholar
  355. 351.
    Latin, A.: The structure of liquid metals. J. Inst. Metals 66, 177 (1940).Google Scholar
  356. 352.
    Lauermann, I., G. Metzger u. F. Sauerwald: Zur Systematik der schmelzflüssigen Metalle und Legierungen VI (Oberflächenspannungen). Wiss. Z. Univ. Halle XIII, 773–796 (1964).Google Scholar
  357. 353.
    -, u. F. Sauerwald: Oberflächenspannungsmessungen der schmelzflüssigen Metalle Cu, Ag, Sb und der Legierungen Cu-Sn, Cu-Sb und Ag-Sb. Z. Metallk. 55, 605–612 (1964).Google Scholar
  358. 354.
    Laughlin, E. Mc., and A. R. Ubbelohde: Pre-Freezing Phenomena in molten metals. Trans. Faraday Soc. 56, 988 (1960).CrossRefGoogle Scholar
  359. 355.
    Lebowitz, J. L., and J. K. Percus: Asymptotic Behaviour of the Radial Distribution Funtion. J. Math. Phys. 4, 248 (1963).CrossRefGoogle Scholar
  360. 356.
    van Leeuwen, J. M. J., J. Groeneveld, and J. de Boer: New Method for the calculation of the pair correlation function. Physica 25, 792 (1959).CrossRefGoogle Scholar
  361. 357.
    Lemm, K.: Einatomige Flüssigkeiten als polyparakristalline Strukturen. Dissertation. Berlin 1966.Google Scholar
  362. 358.
    Ling, R. C.: Interatomic Potential Functions of Sodium and Potassium. J. Chem. Phys. 25, 609 (1956).CrossRefGoogle Scholar
  363. 359.
    -: X-Ray Scattering by Liquid Metal Alloys (A Kinetic Approach), J. Chem. Phys. 25, 614 (1956).CrossRefGoogle Scholar
  364. 360.
    Loading, A.: Electrotransport and Effective Self-Diffusion in Pure Liquid Gallium Metal. J. Phys. Chem. Solids 28, 557 (1967).CrossRefGoogle Scholar
  365. 361.
    -: Thermal Diffusion of Isotopes in Pure Liquids. Z. Naturforsch. 21a, 1348–1351 (1966).Google Scholar
  366. 362.
    -, and A. Ott: Isotope Thermotransport in Liquid Potassium, Rubidium and Gallium. Z. Naturforsch. 21a, 1344 (1966).Google Scholar
  367. 363.
    Lucas, L. D.: The Density of Silver, Copper, Palladium and Platinum in the liquid state. Compt. Rend. 253, 2526–2528 (1961).Google Scholar
  368. 364.
    Lugt, W., and S. B. Molen: Nuclear Magnetic Resonance in Liquid Gallium Alloys (Ga-In, Ga-Sn, Ga-Zn). phys. status solidi 19, 327 (1967).Google Scholar
  369. 365.
    Luo, H. L., C. C. Chao, and P. Duwez: Metastable solid solutions in Aluminium-Magnesium Alloys. Trans. Met. Soc. AIME 230, 1488 (1964).Google Scholar
  370. 366.
    Ma, C. H., and R. A. Swalin: A Study of Solute Diffusion in Liquid Tin. Acta Met. 8, 388 (1960).CrossRefGoogle Scholar
  371. 367.
    Malmberg, T.: Determination of the specific volume of liquid Cu-Pb-Alloys. J. Inst. Metals 89, 137 (1960).Google Scholar
  372. 368.
    Mannchen, W.: Der Zusammenhang zwischen Unterkühlung und Keimbildung beim Erstarren reiner Metalle, Z. Physik. Chem. (Leipzig) 227, 296 (1964).Google Scholar
  373. 369.
    -, u. G. Hahn: Untersuchungen zur Keimbildung in Antimonschmelzen. Z. Elektrochem. 62, 926–935 (1958).Google Scholar
  374. 370.
    -, u. H. Puttrick: Einfluß geringer Fremdelementzusätze auf die Unterkühlung von Antimonschmelzen. Z. Physik. Chem. (Leipzig) 220, 355 (1962).Google Scholar
  375. 371.
    -, u. G. Schuster: Das Unterkühlungsverhalten von Bi und Pb. Z. Physik. Chem. (Leipzig) 233, 296 (1966).Google Scholar
  376. 372.
    Marty, W.: Bestimmung des spezifischen Widerstandes von festem und flüssigem Aluminium und von Aluminiumlegierungen. BBC-Mitteilungen 2746D, Januar 1959.Google Scholar
  377. 373.
    Mason, G., and W. Clark; Fine structure in the Radial Distribution Function from a Random Packing of Spheres. Nature 211, 957 (1966).Google Scholar
  378. 374.
    El.-Mehairy, A. E., and R. G. Ward: Density of molten copper. Trans. Met. Soc. AIME 227, 1226 (1963).Google Scholar
  379. 375.
    Mendel, H.: Experimental Determination of Order Phenomena in liquids and amorphous solids. Acta Cryst. 15, 113 (1962).CrossRefGoogle Scholar
  380. 376.
    Menz, W., u. F. Sauerwald: Viskositätsmessungen XVIII: Die Viskosität der schmelzflüssigen Entmischungssysteme Ga-Cd, Ga-Hg, Ga-Bi. Z. Physik. Chem. (Leipzig) 232, 134 (1966).Google Scholar
  381. 377.
    --: Viskositätsmessungen XVII. Das neue Doppelkapillarviskosimeter und kritische Durchsicht mit neuen Messungen des η-Wertes reiner Metalle. Acta Met. 14, 1617–1623 (1966).CrossRefGoogle Scholar
  382. 378.
    --: Viskositätsmessungen XV. Viskositätsisotherme eines schmelzflüssigen binären metallischen Entmischungs-Systemes mit Maximum (Ga-Hg). Naturwissenschaften 52, 184 (1965).CrossRefGoogle Scholar
  383. 379.
    Mikolaj, P. G., and C. J. Pings: Direct Experimental Test of the PY and CHNC Integral Equations. Phys. Rev. Letters 15, 849 (1965).CrossRefGoogle Scholar
  384. 380.
    --: Direct Determination of the intermolecular Potential Function for Argon from X-Ray Scattering Data. Phys. Rev. Letters, 16, 4 (1966).CrossRefGoogle Scholar
  385. 381.
    Miller, E., J. Paces, and K. L. Komarek: Resistivity of liquid Cd-Sb alloys. Trans. Met. Soc. AIME 230, 1557 (1964).Google Scholar
  386. 382.
    Moore, F. H.: Analytic constants for atomic scattering factors, Acta Cryst. 16, 1169 (1963).CrossRefGoogle Scholar
  387. 383.
    Morrell, W. E., and J. H. Hildebrand: The Distribution of Molecules in a Model Liquid. J. Chem. Phys. 4, 224 (1936).CrossRefGoogle Scholar
  388. 384.
    Mott, B. W.: Liquid Immiscibility in Metal Systems. Phil. Mag. 2, 259–283 (1957).Google Scholar
  389. 384a.
    -, M. E. Downey, and P. A. Cumming: Compendium of references to studies of the properties of liquid metal binary systems which relate to their structure. Report AERE-Bib. 151 (1966).Google Scholar
  390. 385.
    Mott, N. F.: The Electrical properties of liquid mercury. Phil. Mag. 13, 989 (1966).Google Scholar
  391. 386.
    -: An Outline of the Theory of Transport properties. S. 152 in (267).Google Scholar
  392. 387.
    -, J. de Boer, E. N. C. Andrade, R. Eisenschitz, F. C. Frank, and N. N. Greenwood: Discussion on theories of liquids. Proc. Roy. Soc. (London) A 215, 1–65 (1952). (Theories of the liquid state, Transport processes, Viscosity, Supercooling.)Google Scholar
  393. 388.
    Moulson, D. J., and G. A. Styles: Knight shifts in liquid binary alloys containing divalent metals. Phys. Letters A 24A, 438 (1967).CrossRefGoogle Scholar
  394. 389.
    Müller, H. K. F., u. H. Hendus: Die Atomverteilung in flüssigem Antimon. Z. Naturforsch. 12A, 102–111 (1957).Google Scholar
  395. 390.
    Nachtrieb, N. H.: Transport properties in pure liquid metals. S. 49 in Liquid Metals and Solidification, ASM (1958).Google Scholar
  396. 391.
    Nagakura, S., S. Toyama, and S. Oketani: Lattice parameter and structure of Ag-Cu alloys rapidly quenched from liquid state. Acta Met. 14, 73 (1966).CrossRefGoogle Scholar
  397. 392.
    Nakagama, Y.: Magn. suszeptibility of liquid alloys in the systems Cu-Co, Cu-Fe, Cu-Mn, Cu-Cr. J. Phys. Soc. Japan 14, 1372 (1959).CrossRefGoogle Scholar
  398. 393.
    Neimark, V. E.: Connection Between the Short-Range Order of Atoms in Liquid and the Structure of the Same Element in Solid State. S. 39 in (476).Google Scholar
  399. 394.
    Nicolis, G., and G. Severne: Nonstationary Contributions to the Bulk Viscosity and other Transport Coefficients. J. Chem. Phys. 44, 1477–1486 (1966).CrossRefGoogle Scholar
  400. 395.
    Nikolskaya, G. F., V. K. Nikitina, I. V. Evfimovskaya, and Yu. K. Lobanova: Investigation of alloys of the system AuSb in the solid and liquid state. Izv. Akad. Nauk. SSSR, Neorgan. Materialy 1, 1826 (1965).Google Scholar
  401. 396.
    Nikonova, V. V., u. G. M. Bartenev: Einige Besonderheiten der Zustandsdiagramme binärer Legierungen vom eutektischen Typ im Zusammenhang mit dem Bau flüssiger Eutektika. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 131 (1961).Google Scholar
  402. 397.
    Niwa, K., and M. Shimoji: Structure of Liquid Solutions. Seite 2B in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  403. 398.
    Norden, A., and A. Lodding: Self-Transport, Electro Convection and Effective Self-Diffusion in Liquid Rubidium Metal. Z. Naturforsch. 22a, 215 (1967).Google Scholar
  404. 399.
    Novostroiny, S. B., E. A. Beloborodova, and G. J. Batalin: Density of Alloys of Binary Metal Systems Pb-Sn, Sn-Zn, Bi-Sn. Ukr. Khim. Zh. 33, 277 (1967).Google Scholar
  405. 400.
    Nozaki, T., N. Shimoji, and K. Niwa: Thermodynamic properties of Ag-Sn and Ag-Sb Liquid Alloys. Ber. Bunsenges. Physik. Chem. 70, 207–214 (1966).Google Scholar
  406. 401.
    Ocken, H.: Application of Computer Methods to the Analysis of X-Ray Scattering from liquid Metals and Alloys. Report TID 19548 (1963).Google Scholar
  407. 402.
    -, N. C. Halder, and C. N. J. Wagner: The Temp. dependence of the structure of liquid In and Tl. To be published in Phys. Rev.Google Scholar
  408. 403.
    -, and C. N. J. Wagner: Temperature Dependence of the Structure of Liquid Indium. Phys. Rev. 149, 122–130 (1966).CrossRefGoogle Scholar
  409. 404.
    Odle, R. L.: Nuclear Magnetic Resonance in Liquid Copper Alloys. Phil. Mag. 13, 699 (1966).Google Scholar
  410. 405.
    -, and C. P. Flynn: Nuclear magnetic resonance in liquid copper and antimony metals. J. Phys. Chem. Solids 26, 1685–1687 (1965).CrossRefGoogle Scholar
  411. 406.
    Oehme, H., u. H. Richter: Messung der kohärenten Streuung von Neutronen an geschmolzenem Natrium, Cäsium und Wismut bei verschiedenen Temperaturen. Naturwissenschaften 53, 16 (1966).CrossRefGoogle Scholar
  412. 407.
    Ofte, D.: Application of a viscosity technique to liquidus determinations in molten alloys. Trans. Met. Soc. AIME 236, 585–587 (1966).Google Scholar
  413. 408.
    Oriani, R. A., and W. K. Murphy: Energetics of dilute solutions of noble metals in liquid tin; Seite 2 I in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  414. 409.
    Orion, B. R., B. A. Shaw, and G. J. Williams: An X-Ray structure Investigation of the liquids of Na, K and Na-K Alloys. Acta Met. 8, 177 (1960).CrossRefGoogle Scholar
  415. 410.
    -, and S. P. Smith: An X-Ray Diffraction Investigation of Liquid Indium. Phil. Mag. 14, 873–877 (1966).Google Scholar
  416. 411.
    Paalman, H. H., and C. J. Pings: Fourier Analysis of X-ray diffraction data from liquids. Rev. Mod. Phys. 35, 389 (1963).CrossRefGoogle Scholar
  417. 412.
    Palevsky, H.: Inelastic Neutron Scattering by Liquids. Seite 201 in (267).Google Scholar
  418. 413.
    Paskin, A., and A. Rahman: The Dynamic Three-Dimensional Structure of Liquid Sodium; Acta Cryst. 21, Part 7, Supplement A 237 (1966).Google Scholar
  419. 414.
    --: Effects of a Long Range Oscillatory Potential on the Radial Distribution Function and the Constant of Self-Diffusion in Liquid Na. Phys. Rev. Letters 16, 300 (1966).CrossRefGoogle Scholar
  420. 415.
    Percus, J. K., and G. J. Yevick: Analysis of Classical Statistical Mechanics by Means of Collective Coordinates. Phys. Rev. 110, 1 (1958).CrossRefGoogle Scholar
  421. 416.
    Pfannenschmid, O.: Atomverteilung in flüssigem Quecksilber, geschmolzenem Silber und Gold. Z. Naturforsch. 15 A, 603–612 (1960).Google Scholar
  422. 417.
    -Bestimmung der Atomverteilung in einatomigen Metallschmelzen. Dissertation T. H. Stuttgart (1959).Google Scholar
  423. 418.
    Phariseau, P., and J. M. Ziman: The Theory of the Electronic Structure of Liquid Metals. Phil. Mag. 8, 1487 (1963).Google Scholar
  424. 419.
    Philips, J. M., and L. H. Lund: Pair Distribution for a Cell-Model Liquid. J. Phys. Soc. Japan 21, 1485–1494 (1966).CrossRefGoogle Scholar
  425. 420.
    Plass, K. G.: Ultraschallmessungen in Metallen in geschmolzenem Zustand und beim Erstarren. Acustica 13, 240 (1963).Google Scholar
  426. 421.
    Pokrovskii, N. L.: Zur Frage des Vorhandenseins von Wechselwirkungen zwischen den Atomen in flüssigen verdünnten Lösungen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 122 (1961).Google Scholar
  427. 422.
    Polozkii, I. G., u. S. L. Cholov: Die Ultraschallgeschwindigkeit in geschmolzenen Sn-Bi-Legierungen und deren Kompressibilität. Akust. Zh. 4, 184 (1958).Google Scholar
  428. 423.
    -, U. F. Taborov u. S. L. Cholov: Apparatur zur Messung der Ultraschallgeschwindigkeit in flüssigen Metallen. Akust. Zh. V, 202 (1959).Google Scholar
  429. 424.
    Powell, C. J.: Differences in the Characteristic Electron Energy-Loss Spectra of Solid and Liquid Bismuth. Phys. Rev. Letters 15, 852 (1965).CrossRefGoogle Scholar
  430. 425.
    Predel, B.: Thermodynamische Untersuchungen im System In-Bi; Z. Metallk. 55, 97 (1964).Google Scholar
  431. 426.
    -: Bestimmung thermodynamischer Aktivitäten nach einem Dampfdruck-Vergleichsverfahren am Beispiel flüssiger Ga-Cd-Legierungen. Z. Metallk. 49, 226 (1958).Google Scholar
  432. 427.
    -: Über einen Nachschmelzeffekt in reinen Metallen. Z. Metallk. 54, 206–212 (1963).Google Scholar
  433. 428.
    -: Nachweis und Abschätzung von Fehlpassungsenergien in flüssigen und festen Legierungen. Acta Met. 14, 209 (1966).CrossRefGoogle Scholar
  434. 429.
    Prins, J. A.: Röntgenbeugung an flüssigem Schwefel. Physika 20, 124 (1954).Google Scholar
  435. 430.
    Prokhorenko, V. K.: On the structure of alkaline metals in a liquid state. Dokl. Akad. Nauk Belorussk. SSR 5, 194–196 (1959).Google Scholar
  436. 431.
    Predel, B., u. D. Rothacker: Thermodynamische Untersuchungen an geschmolzenen Hg-Cd-und Hg-Bi-Legierungen. J. Less-Common-Metals 10, 392–401 (1966).CrossRefGoogle Scholar
  437. 432.
    --: Thermodyn. Untersuchungen an flüssigen und festen Hg-In-Legierungen. Acta Met. 15, 135 (1967).CrossRefGoogle Scholar
  438. 433.
    Prigogine, I.: Transport Processes, Correlation Functions, and Reciprocity Relations in Dense Media, S. 142 in (267).Google Scholar
  439. 434.
    Prokhorenko, V. K., and I. Z. Fisher: Microstructure of single liquids. Zh. Fiz. Khim. 33, 1852 (1959).Google Scholar
  440. 435.
    Radchenko, I. V.: 45 Jahre Röntgenbeugung an Flüssigkeiten. Ukr. Fiz. Zh. 7, 820 (1962).Google Scholar
  441. 436.
    -: The Structure of Liquid Metals. Usp. Fiz. Nauk LXI, 249–276 (1957) bzw. in engl. Übersetzung: Report AEC-tr-3971, 287–332 (1957).Google Scholar
  442. 437.
    Rahman, A.: Liquid structure and self diffusion. J. Chem. Phys. 45, 2585–2592 (1966).CrossRefGoogle Scholar
  443. 437 a.
    Randall, J. T.: The diffraction of X-rays and electrons by amorphous solids, liquids and gases. London: Chapman & Hall Ltd. 1934.Google Scholar
  444. 438.
    Randolph, P. D., and K. S. Singwi: Slow neutron scattering and collective motions in liquid lead. Phys. Rev. 152, 99 (1966).CrossRefGoogle Scholar
  445. 439.
    Ree, T. S., T. Ree u. H. Eyring: Fortschritte in der Theorie der Flüssigkeiten. Angew. Chem. 77, 993–1000 (1965).Google Scholar
  446. 440.
    Regel, A. V.: Untersuchung der elektronischen Leitfähigkeit von Metallen, Legierungen und intermetallischen Verbindungen im flüssigen Zustand, S. 3 in (15).Google Scholar
  447. 441.
    -: Change in Carrier Mobility During Melting of Metals and Semiconductors. Ukr. Fiz. Zh. 7, 833 (1962).Google Scholar
  448. 442.
    Rice, S. A.: A Brief Review of Some Aspects of the Molecular Theory of Liquids. S. 51 in (267).Google Scholar
  449. 443.
    Richter, H.: Die komplexe Struktur von festem amorphem und von geschmolzenem Wismuth. Z. Physik 172, 530–535 (1963).CrossRefGoogle Scholar
  450. 444.
    -: Atomanordnung in festen amorphen Stoffen und in einatomigen Metallschmelzen. Fortschr. Phys. 8, 493 (1960).Google Scholar
  451. 445.
    -: Die amorphe Struktur von Metalloxiden, Metallen und Legierungen (u.a. BiPb, BiSn, PbSn). Phys. Z. 44, 406 (1943).Google Scholar
  452. 446.
    -, u. G. Breitling: Struktur einatomiger Metallschmelzen. Z. Naturforsch. 20A, 1061 (1965).Google Scholar
  453. 447.
    --: Struktur einatomiger Metallschmelzen nach Beugungsversuchen mit Röntgen-, Elektronen-und Neutronenstrahlen. Fortschr. Phys. 14, 71–140 (1966).Google Scholar
  454. 447a.
    --: Flächengitter in geschmolzenem Zinn und Silber sowie in festem amorphem Selen nach der Fourieranalyse. Z. Naturforsch. 21a, 1710 (1966).Google Scholar
  455. 448.
    --u. F. Herre: Dichteste Atompackung und Schichtpaketbildung in einatomigen Metallschmelzen. Z. Naturforsch. 72a, 896 (1957).Google Scholar
  456. 449.
    -, u. D. Handtmann: Struktur von geschmolzenem Zinn bei 250°C und 750°C nach verschiedenen Auswerte verfahren. Z. Physik 181, 206–232 (1964).CrossRefGoogle Scholar
  457. 450.
    -, u. F. Herre: Struktur des festen amorphen und geschmolzenen Selens im Temperaturbereich von −180°C bis 430°C. Z. Naturforsch. 13a, 874 (1958).Google Scholar
  458. 451.
    -, u. S. Steeb: Atomverteilung in festen amorphen Stoffen mit Flüssigkeitsstruktur und in einatomigen Metallschmelzen. Z. Metallk. 50, 369 (1959).Google Scholar
  459. 452.
    Richer, T., u. G. Schaumann: Thermoelektrische Eigenschaften reiner Metalle in der Umgebung der Schmelztemperatur. Physik Kondensierten Materie 5, 31–38 (1966).Google Scholar
  460. 453.
    Ringo, G. R.: Neutron Diffraction und Interferences, in Hand. Physik 32 (herausgeg. v. S. Flügge), S. 558ff. Berlin: Springer 1956.Google Scholar
  461. 454.
    Rivlin, V. G., R. M. Waghome, and G. I. Williams: The structure of liquid mercury. Phil. Mag. 13, 1169 (1966).Google Scholar
  462. 455.
    Rodriguez, S. E., and C. J. Pings: X-Ray Diffraction Studies of Stable and Supercooled Liquid Gallium. J. Chem. Phys. 42, 2435 (1965).CrossRefGoogle Scholar
  463. 456.
    Roll, A., u. G. Fees: Der elektrische Widerstand von geschmolzenen Pb-Sn-und Hg-Tl-Legierungen. Z. Metallk. 51, 1 (1960).Google Scholar
  464. 457.
    -, u. H. Motz: Meßmethoden und elektrischer Widerstand von geschmolzenen reinen Metallen. Z. Metallk. 48, 272 (1957).Google Scholar
  465. 458.
    --: Der elektrische Widerstand geschmolzener Cu-Sn-, Ag-Sn-und Mg-Pb-Legierungen. Z. Metallk. 48, 435 (1957).Google Scholar
  466. 459.
    --: Der elektrische Widerstand von Legierungsschmelzen der Mischkristallsysteme Ag-Au und Au-Cu sowie der eutektischen Systeme Ag-Cu, Sn-Zn und Al-Zn. Z. Metallk. 48, 495 (1957).Google Scholar
  467. 460.
    -, u. N. K. A. Swamy: Der elektrische Widerstand geschmolzener Al-Zn-Sn-Legierungen. Z. Metallk. 52, 260 (1961).Google Scholar
  468. 461.
    --: Der elektrische Widerstand geschmolzener Zweistofflegierungen des Cd mit Pb, Hg, Zn, des In mit Ga, Hg und des Sb mit Bi. Z. Metallk. 52, 111 (1961).Google Scholar
  469. 462.
    -, u. E. Uhl: Der elektrische Widerstand geschmolzener Au-Sn-, Au-Pb-und Ag-Pb-Legierungen. Z. Metallk. 50, 160 (1959).Google Scholar
  470. 463.
    Romanov, A. A., and V. G. Kochegarov: A Study of the Viscosity and Structure of Iron-Carbon Melts. Izvest. Akad. Nauk SSSR, Met. i Gorn. Delo 3, 89 (1963).Google Scholar
  471. 464.
    --: Viscosity of the melts of the systems Fe-Mn, Fe-P, Fe-Cr, Fe-V in the initial concentration range of the second component. Fiz. Metal. i Metalloved. 18, 869 (1964).Google Scholar
  472. 465.
    -: The structure of liquid indium according to X-ray data. Vopr. Fiz. Metallov i Metallovedenja 14, 133–138 (1962).Google Scholar
  473. 466.
    -, and Y. M. Kuchak: X-Ray Study of Molten Intermetallic Compounds of the In-Bi-System. Ukr. Fiz. Zh. 9, 428 (1964).Google Scholar
  474. 467.
    -, and A. S. Lashko: X-Ray Investigation of the Structure of Some Liquid Alloys of In with Pb and Sn. Naucha. Raboty Inst. Metallofiz. Ukr. SSR 15, 87–99 (1962).Google Scholar
  475. 468.
    Rossteutscher, W.: Bestimmung der Atomverteilung in festem amorphem und in flüssigem Gallium sowie in geschmolzenem Indium nach Elektronenbeugungsaufnahmen. Dipl.-Arbeit, T. H. Stuttgart (1959).Google Scholar
  476. 469.
    Rothwell, E.: A Precise Determination of the Viscosity of Liquid Tin, Lead, Bismuth, and Aluminium by an Absolute Method. J. Inst. Metals 90, 389 (1960).Google Scholar
  477. 470.
    Ruppersberg, H.: Comparaison des courbes de repartition des atomes du cuivre liquide et du cuivre solide. Mem. Sci. Rev. Met. LXI, 10, 709 (1964).Google Scholar
  478. 471.
    -: Struktur und Atomverteilungskurven von metallischen Schmelzen. Angew. Chem. 76, 895 (1964).Google Scholar
  479. 472.
    -: Bestimmung der Atomverteilungskurven von festem Kupfer bei hohen Temperaturen. Z. Physik 189, 292 (1966).CrossRefGoogle Scholar
  480. 473.
    -, u. H. J. Seemann: Röntgen-Feinstrukturuntersuchungen an flüssigem Eisen. Z. Naturforsch. 21a, 820 (1966).Google Scholar
  481. 474.
    --: Die Atomverteilungskurven für festes und flüssiges Al nach Untersuchungen an SAP. Z. Naturforsch. 20a, 104–109 (1965).Google Scholar
  482. 475.
    Sagel, K.: Tabellen zur Röntgenstrukturanalyse. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  483. 476.
    Samarin, A. M.: Structure and Properties of Liquid Metals. Report AEC, tr 4879 (1960).Google Scholar
  484. 477.
    -: Some properties of liquid alloys. J. Iron Steel Inst. London 200, 95 (1962).Google Scholar
  485. 478.
    Samoilov, O. Y.: The structure of certain liquids; I. On the result of studies of the structure of monatomic liquids. Zh. Fiz. Khim. 30, 241 (1956) bzw. AEC-tr-4119.Google Scholar
  486. 479.
    -: Investigation of the structure of liquid metals; Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 116–118 (1961).Google Scholar
  487. 480.
    Sauerwald, F.: Zur Systematik schmelzflüssiger Legierungen. Z. Metallk. 38, 188 (1947) 35, 105 (1944) 41, 97, 214 (1950).Google Scholar
  488. 481.
    -, P. Brand u. W. Menz: Über den jetzigen Stand der systematischen Betrachtung schmelzflüssiger Legierungen (zur Systematik VII). Z. Metallk. 57, 103 (1966).Google Scholar
  489. 482.
    -, u. E. Osswald: Über die röntgenographische Untersuchung schmelzflüssiger Metalle und Legierungen II. Z. Anorg. Chem. 257, 195 (1948).CrossRefGoogle Scholar
  490. 483.
    Schachparonov, M. I.: Über die molekulare Struktur flüssiger Lösungen und Legierungen. S. 103 in (15).Google Scholar
  491. 484.
    Scheil, E.: Über den Zustand von Metallschmelzen. Forschungsber. Landes Nordrhein-Westfalen 969 (1961) bzw. Gießerei 19, 1007 (1958).Google Scholar
  492. 485.
    -, u. H. Baach: Dampfdruckmessungen an flüssigen Cd-Sb-Legierungen. Z. Metallk. 50, 386 (1959).Google Scholar
  493. 486.
    -, u. F. Wolf: Dampfdruckmessungen an flüssigen Sn-Zn-und Mg-Pb-Legierungen. Z. Metallk. 50, 1 (1959).Google Scholar
  494. 487.
    Schlup, W. A.: A statistical evaluation of elastic scattering data with application to thermal neutron scattering in liquid Argon; BNL 940 (C-45) (1966).Google Scholar
  495. 488.
    Schneider, A., u. E. K. Stoll: Die Dampfdrucke des Magnesiums über Aluminium-Magnesium-Legierungen. Z. Elektrochem. 47, 519 (1941).Google Scholar
  496. 489.
    -, and G. Heymer: Phenomena accompanying solid-liquid transformations of metals and alloys, S. 4 A in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  497. 490.
    Schuhmann, H.: Röntgenuntersuchungen schmelzflüssiger Metalle und Legierungen: Über die Systeme K-Hg und Na-Hg. Z. Anorg. Allgem. Chem. 317, 204 (1962).CrossRefGoogle Scholar
  498. 491.
    Schulz, L. G., u. P. Spiegler: Bestimmung des elektrischen Widerstandes der flüssigen Legierungen HgIn, HgTl, GaIn, GaSn und des flüssigen Ga. Trans. Met. Soc. AIME 215, 87 (1959).Google Scholar
  499. 492.
    Scott, G. D.: Radial Distribution of the Random Close Packing of Equal Spheres. Nature 194, 956 (1962).Google Scholar
  500. 493.
    -: Packing of Equal Spheres. Nature 188, 908 (1960).Google Scholar
  501. 494.
    Sharrah, P. C., and R. F. Kruh: Structural Studies of Liquid Metals by X-Ray Diffraction; in G. R. St. Pierre, Met. Soc. Conf. Vol. 7 Phys. Chem. of Process Metallurgy, Part I, 419–420, Interscience Publishers, New York, London, (1959).Google Scholar
  502. 495.
    -, J. I. Pets, and R. F. Kruh: Determination of Atomic Distributions in Liquid Lead-Bismuth Alloys by Neutron and X-Ray Diffraction. J. Chem. Phys. 32, 241 (1960).CrossRefGoogle Scholar
  503. 496.
    -, and G. P. Smith: Neutron Diffraction and Atomic Distribution in Liquid Lead and Liquid Bismuth at two Temperatures. J. Chem. Phys. 21, 228 (1953).CrossRefGoogle Scholar
  504. 497.
    Shimoji, M.: Activation Energy of Flow in Liquid Metals; in G. R. St. Pierre, Met. Soc. Conf. Vol. 7, 471. Phys. Chem. of Process Metallurgy, Part I, Interscience Publishers, New York, London (1959).Google Scholar
  505. 498.
    -: Interpretation of the thermodynamics of liquid metallic solutions, Seite 2 G in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  506. 499.
    Shimose, I.: Lattice theory of the liquid state. J. Phys. Soc. Japan 11, 615 (1956).CrossRefGoogle Scholar
  507. 500.
    Shvidkovskii, E. G., and N. K. Rakova: Crystallization of Tin From a Supercooled State. S. 64 in (476).Google Scholar
  508. 501.
    -: Einige Fragen des Aufbaus und der Eigenschaften von Flüssigkeiten in der Anwendung auf geschmolzene Metalle. S. 85 in (15).Google Scholar
  509. 502.
    -Certain problems related to the viscosity of fused metals, 1955 (Übersetzt in Report NASA-TT-F 88, 1962).Google Scholar
  510. 503.
    Sidhu, S. S., C. R. Heaton, and M. H. Müller: Neutron Diffraction Techniques and Their Applications to some Problems in Physics. J. Appl. Phys. 30, 1323 (1959).CrossRefGoogle Scholar
  511. 504.
    Singwi, K. S.: Coherent Scattering of Slow Neutrons by a Liquid. Phys. Rev. 136, A 969 (1964).CrossRefGoogle Scholar
  512. 505.
    -: Coherent Scattering of Slow Neutrons by Liquid Argon. Physica 31, 1257–1285 (1965).CrossRefGoogle Scholar
  513. 506.
    Siol, M.: Zur Theorie des schmelzflüssigen Zustandes. Z. Physik 164, 93 (1961).CrossRefGoogle Scholar
  514. 507.
    Skinner, H. W. B.: X-Ray Investigation of liquid Pb-Sn; Phil. Trans. Royal Soc. London A 239, 95–135 (1940).Google Scholar
  515. 508.
    Skryschevskii, A. F.: Über die Interpretation der Struktur der einatomigen Flüssigkeiten. Ukr. Fiz. Zh. 7, 826 (1962).Google Scholar
  516. 509.
    -: X-Ray Investigation of Short Range Order in Certain Liquid Alloys. Nauk. Raboty Inst. Metallofiz. Akad. Nauk, Ukr. SSR 8, 187–198 (1957).Google Scholar
  517. 510.
    -: Short Range Order Structure in Liquid Metals and Alloys. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 6, 72–76 (1960) (s. auch S. 45 in (476)).Google Scholar
  518. 511.
    -: On the structure of molten Au-Sn compounds. Ukr. Fiz. Zh. 2, 364 (1957).Google Scholar
  519. 512.
    Skryschevskii, A. F., J. Karlokov u. G. Karlikova: Struktur von flüssigem Quecksilber mit Röntgenbeugung. Ukr. Fiz. Zh. 2, 49 (1957).Google Scholar
  520. 513.
    Smallman, R. E., and B. R. T. Frost: An X-Ray Investigation of the Structure of Liquid Mercury and Liquid Mercury-Thallium Alloys. Acta Met. 4, 611 (1956).CrossRefGoogle Scholar
  521. 514.
    Smoes, S.: Vapour pressure of U. Ind. Chim. Belge 29, 792 (1964).Google Scholar
  522. 515.
    Snider, N. S.: Hard Core Model of Liquids. J. Chem. Phys. 45, 378 (1966).CrossRefGoogle Scholar
  523. 516.
    Solovev, A. N.: Thermodynamic similarity and viscosity of molten metals. Atomnaya Energiya, Moskau 3, 550 (1957).Google Scholar
  524. 517.
    Spektor, E. Z., and S. F. Khoklov: Notes on the Interpretation of Intensity Curves of X-Rays Diffracted by Liquids such as Molten Tin. Fiz. Metal. i Metalloved. 18, 451 (1964).Google Scholar
  525. 518.
    Spiller, K. H.: Physikalische Stoffeigenschaften von Na, K und Na-K-Legierungen. Atomenergie 10, 215 (1965).Google Scholar
  526. 519.
    Springer, B.: Resistivity and Halleffect in Liquid Metals. Phys. Rev. 136, A 115, A 124 (1964).CrossRefGoogle Scholar
  527. 520.
    Sprow, F. B., and J. M. Prausnitz: Surface Tension of Simple Liquid Mixtures. Trans Faraday Soc. 62, 1105 (1966).CrossRefGoogle Scholar
  528. 521.
    --: Surface Tension of Simple Liquids. Trans. Faraday Soc. 62, 1097 (1966).CrossRefGoogle Scholar
  529. 522.
    Statsenko, S. I., A. G. Morachevsky, V. B. Busse-Machukas, and S. A. Zaretzky: Electrical Conductivity of Molten Pb-Na and Pb-K Alloys. Izvestiya Akad. Nauk SSSR, Seriya Metally 4, 55 (1966).Google Scholar
  530. 523.
    Steeb, S.: Struktur metallischer Schmelzen. Z. Metallk. 57, 97–103 (1966).Google Scholar
  531. 524.
    -: Über die Atomverteilung in Schmelzen. Z. Metallk. 52, 422–425 (1961).Google Scholar
  532. 525.
    -Atomverteilung in festen amorphen Stoffen und einatomigen Metallschmelzen nach Elektronenbeugungs-Aufnahmen. Dissertation, T. H. Stuttgart (1958).Google Scholar
  533. 526.
    -, u. H. Entress: Atomverteilung sowie spezifischer elektrischer Widerstand geschmolzener Magnesium-Zinn-Legierungen. Z. Metallk. 57, 803–807 (1966).Google Scholar
  534. 527.
    -, u. R. Hezel: Über die Interpretation der Röntgenbeugungsdiagramme von mehrkomponentigen Schmelzen. Z. Physik 191 398 (1966).CrossRefGoogle Scholar
  535. 528.
    --: Röntgenographische Strukturuntersuchungen an schmelzflüssigen Ag-Mg-Legierungen. Z. Metallk. 57, 374 (1966).Google Scholar
  536. 529.
    -, u. S. Woerner: Atomverteilung sowie physikalische Eigenschaften von geschmolzenen Al-Mg-Legierungen. Z. Metallk. 56, 771 (1965).Google Scholar
  537. 530.
    Steele, W. A., and R. Pecora: Scattering from fluids of nonspherical molecules, I. X-Rays and Neutrons. J. Chem. Phys. 42, 1863 (1965).CrossRefGoogle Scholar
  538. 531.
    Steiner, A., E. Miller, and K. L. Komarek: Mg-Sn-phase diagram and thermodynamic properties of liquid Mg-Sn alloys. Trans. Met. Soc. AIME 230, 1361 (1964).Google Scholar
  539. 532.
    Stokes, R. H.: The Molar Volumes and Thermal Expansion Coefficients of Solid and Liquid Potassium from 0–85°C. J. Phys. Chem. Solids, 27, 51–56 (1966).CrossRefGoogle Scholar
  540. 533.
    Strauss, S. W.: The Surface Tension of Liquid Metals at their Melting Points. Nucl. Sci. Eng. 8, 362 (1960).Google Scholar
  541. 534.
    Strozecka, K., and J. Terpitowski: Thermodynamic properties of Tl-Sn liquid solid solutions. Roczniki Chem. 39, 663 (1965).Google Scholar
  542. 535.
    Sundström, L. J.: A Theorie of the Electrical Properties of Liquid Metals; IV. Quantitative Calculations of Resistivity and Thermoelectric Power. Phil. Mag. 11, 657 (1965).Google Scholar
  543. 536.
    Szwarc, R., E. R. Plante, and J. J. Diamond: Vapour pressure and heat of sublimation of tungsten. J. Res. Natl. Bur. Std., A 69, 417 (1965).Google Scholar
  544. 537.
    Takagi, M.: Electron diffraction study of liquid solid transition of thin metal films. J. Phys. Soc. Japan 9, 359 (1954).CrossRefGoogle Scholar
  545. 538.
    -: Electron Diffraction Study of the Structure of Supercooled Liquid Bismuth. J. Phys. Soc. Japan 11, 396–404 (1956).Google Scholar
  546. 539.
    Tatarinova, L. I.: Untersuchung von geschmolzenem Antimon mittels Röntgenbeugung. Kristallografiya 11, 104 (1955).Google Scholar
  547. 540.
    Taylor, A.: X-Ray Metallography. New York: J. Wiley & Sons, Inc. 1961.Google Scholar
  548. 541.
    Temperley, H. N. V.: Liquid State Physics. Nature 211, 906 (1966).Google Scholar
  549. 542.
    Thomas, C. D., and N. S. Gingrich: The Effect of Temperature on the Atomic Distribution in Liquid Potassium. J. Chem. Phys. 6, 411, 659 (1938).CrossRefGoogle Scholar
  550. 543.
    Thresh, H. R.: The viscosity of liquid Zinc by oscillating a cylindrical vessel. Trans. Met. Soc. AIME 233, 79 (1965).Google Scholar
  551. 544.
    Throop, G. J., and R. J. Bearman: Radial Distribution Functions for Binary Fluid Mixtures of Lennard-Jones Molecules Calculated from the Percus-Yevick Equation. J. Chem. Phys. 44, 1423–1444 (1966).CrossRefGoogle Scholar
  552. 545.
    Tikhomisoc, A. A., I. I. Styvahin, O. A. Esin, and B. M. Lepinskikh: Thermodynamic properties of molten Al-Sn solutions. Tsvetnye Metally 4, 22 (1966).Google Scholar
  553. 546.
    Timofeevitscheva, O. A., u. V. B. Lazarev: Zur Frage der Oberflächenspannung und der Struktur metallischer Schmelzen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Topl. S. 148 (1961).Google Scholar
  554. 547.
    Tjaden, K.: Absorption longitudinaler Ultraschallwellen in Aluminium bei hohen Temperaturen. Acustica 11, 127 (1961).Google Scholar
  555. 548.
    Todd, D. D., W. A. Oates, and E. O. Hall: A calorimetric study of the thermodynamic properties of Pb-Zn alloys in molten state. J. Inst. Metals 93, 302 (1965).Google Scholar
  556. 549.
    Tohik, O. S., u. N. A. Rundutsch: Über die Viskosität und den Aufbau von flüssigen Lösungen von Zn, Cd, Sn, Bi und Pb in Hg. Ukr. Fiz. Zh. 1, 170 (1956).Google Scholar
  557. 550.
    Toye, T. C.: Thin metal films and the theory of liquid metals. Metallurgia 67 (1966).Google Scholar
  558. 551.
    Trimble, F. H., and N. S. Gingrich: The effect of the temperature on the atomic distribution in liquid sodium. Phys. Rev. 53, 278 (1938).CrossRefGoogle Scholar
  559. 552.
    Turnbull, D.: Free volume model of the liquid state. S. 6 in (267).Google Scholar
  560. 553.
    Ubbelohde, A. R.: Melting and Crystal Structure. Oxford: Clarendon Press, 1965.Google Scholar
  561. 554.
    -: Schmelzvorgang und Kristallstruktur. Angew. Chem. 77, 614 (1965).Google Scholar
  562. 555.
    -Viscosity Anomalies and Other Pre-Freezing Phenomena. S. 226 in (267).Google Scholar
  563. 556.
    Übelacker, E., et L. D. Lucas: Densité de l'étain, du zinc et des alliages étainzinc à l'état liquide. Compt. Rend. 254, 1622 (1962).Google Scholar
  564. 557.
    Urbain, G.: Viscosity and density measurements on molten metals; Seite 1F in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  565. 558.
    -, and L. D. Lucas: Densities of molten silver, copper and iron; S. 4E in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  566. 559.
    Vainshtein, B. K.: Structure Analysis by Electron Diffraction. London: Pergamon Press 1964.Google Scholar
  567. 560.
    Varich, N. I., and B. N. Litvin: Study of Liquid State Quenched Mg-Mn and Mg-Zr Alloys. Fiz. Metal. i Metalloved. 16, 526 (1963).Google Scholar
  568. 561.
    Varley, J. H. O.: On miscibility in liquid alloys; Seite 2H in Nat. Phys. Lab. Symp. 9. London: Her Majesty's Stationery Office 1959.Google Scholar
  569. 562.
    Venkateswarlu, K., and S. Skjraman: Magnetic Susceptibility of Alkali Elements. Z. Naturforsch. 13a, 455 (1958).Google Scholar
  570. 563.
    Vertman, A. A., A. M. Samarin: Viscosity of Liquid Ni-Al Alloys. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 159 (1961).Google Scholar
  571. 564.
    --: Eigenschaften flüssiger Legierungen, die im festen Zustand eine vollständige Mischkristallbildung aufweisen. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 2, 83 (1961).Google Scholar
  572. 565.
    --Physicochemical Properties of Liquid Iron, Nickel and Cobalt Alloys. S. 134 in (476).Google Scholar
  573. 566.
    --and B. M. Turovskii: Particularities of the Structure of Liquid Alloys of the Fe-C-System. S. 158 in (476).Google Scholar
  574. 567.
    --, and A. M. Yakobson: The Structure of Liquid Eutectics. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 17–21 (1960).Google Scholar
  575. 568.
    Vineyard, G. H.: The Theory and Structure of Liquids; S. 1 in Liquid Metals and Solidification, Published by the American Society for Metals, Cleveland, Ohio 1958.Google Scholar
  576. 569.
    -Liquids. BNL 940 (C-45) 1965.Google Scholar
  577. 570.
    Vineyard, H. G.: Scattering of Slow Neutrons by a Liquid. Phys. Rev. 110, 999 (1958).CrossRefGoogle Scholar
  578. 571.
    Vlasov, V. M., A. A. Vertman, u. E. G. Schwidkovskii: Zu den Schlußfolgerungen der Diskussion über die Struktur und Eigenschaften flüssiger Metalle. Izvest. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3, 104 (1961).Google Scholar
  579. 572.
    Voigtländer-Tetzner, G.: Structure of liquid mercury. Naturwissenschaften 48, 520 (1961).CrossRefGoogle Scholar
  580. 573.
    Wachtel, E., u. K. J. Nier: Magnetische Untersuchung des Systems Mn-Ga im festen und flüssigen Zustand. Z. Metallk. 56, 779 (1965).Google Scholar
  581. 574.
    -, u. K. Tsiuplakis: Magnetische Eigenschaften zinkreicher Zn-Mn-Legierungen im festen und geschmolzenen Zustand. Z. Metallk. 58, 41 (1967).Google Scholar
  582. 575.
    -, u. E. Übelacker: Messung der Dichte und der magnetischen Suszeptibilität von Zinn-Zink-Legierungen; Forschungsber. Landes Nordrhein-Westfalen 1391 (1964).Google Scholar
  583. 576.
    -, S. Woerner, u. S. Steeb: Magnetische Eigenschaften von Al-Mg-Legierungen im festen und geschmolzenen Zustand. Z. Metallk. 56, 776 (1965).Google Scholar
  584. 577.
    Wagner, C. N. J., H. Ocken, and M. L. Joshi: Interference and Radial Distribution Functions of Liquid Copper, Silver, Tin and Mercury. Z. Naturforsch. 20 a, 325 (1965).Google Scholar
  585. 578.
    Wall, C. N.: An Atomic Distribution Function for Liquid Sodium. Phys. Rev. 54, 1026 (1938).CrossRefGoogle Scholar
  586. 579.
    Walls, H. A., and W. R. Upthegrove: Theory of Liquid Diffusion Phenomena. Acta Met. 12, 461 (1964).CrossRefGoogle Scholar
  587. 580.
    Wallwey, L. E., and L. C. Tao: Vapour pressure of liquid metal solutions: Hg-Pb. J. Chem. Eng. Data 10, 234 (1965).CrossRefGoogle Scholar
  588. 581.
    Ward, R. G., and J. R. Wilson: Ordering in Liquid Mercury-Thallium Alloys Containing 25–35 At.-% Thallium. Nature 182, 334 (1958).Google Scholar
  589. 582.
    Warren, B. E.: X-Ray Studies of the Randomness in the Cu-Au-System. Trans. Met. Soc. AIME 233, 1802 (1965).Google Scholar
  590. 583.
    -, and N. S. Gingrich: Fourier Integral Analysis of X-Ray Powder Patterns. Phys. Rev. 46, 368 (1934).CrossRefGoogle Scholar
  591. 584.
    -, H. Krutter, and O. Morningstar: Fourier Analysis of X-Ray Patterns of Vitreous SiO2 and B2O4. J. Am. Ceram. Soc. 19, 202 (1936).Google Scholar
  592. 585.
    Waser, J., and V. Schomaker: The Fourier Inversion of Diffraction Data. Rev. Mod. Phys. 25, 671 (1953).CrossRefGoogle Scholar
  593. 586.
    Wertheim, M. S.: New Model for Classical Fluids. J. Chem. Phys. 43, 1370 (1965).CrossRefGoogle Scholar
  594. 587.
    Wilson, J. R.: The Structure of Liquid Metals and Alloys. Met. Rev. 10, 381–590; 1965.Google Scholar
  595. 588.
    -: Resistivities of Mg-Sn Liquid Alloys. Phys. Letters 20, 561 (1966).CrossRefGoogle Scholar
  596. 589.
    Wiser, N.: Electrical Resistivity of the Simple Metals. Phys. Rev. 143, 393 (1966).CrossRefGoogle Scholar
  597. 590.
    Woerner, S., S. Steeb u. R. Hezel: Die Atomverteilung in geschmolzenem Magnesium. Z. Metallk. 56, 682 (1965).Google Scholar
  598. 591.
    Wood, W. W., and F. R. Parker: Monte Carlo Equation of State of Molecules Interacting with the Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature. J. Chem. Phys. 27, 720 (1957).CrossRefGoogle Scholar
  599. 593.
    Zadumkin, S. N.: Surface Tension and Structure of Metallic Melts. S. 30 in (476).Google Scholar
  600. 594.
    Zarzycki, J.: Chambre de Diffraction de Rayons X pour Etude des Sels fondus aux temperatures elevees. J. Phys. Radium 17, 44 A (1959).Google Scholar
  601. 595.
    Zernike, F., u. J. A. Prins: Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung. Z. Physik 41, 184 (1927).CrossRefGoogle Scholar
  602. 596.
    Ziman, J. M.: The Method of Neutral Pseudo-Atoms in the Theory of Melts. Advan. Phys. 13, 89 (1964).CrossRefGoogle Scholar
  603. 597.
    -: A Theory of the Electrical Properties of Liquid Metals. I: The Monovalent Metals. Phil. Mag. 6, 1013 (1961).Google Scholar
  604. 598.
    -Electrons in Liquid Metals. Phys. Today 40 (1966).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • S. Steeb
    • 1
  1. 1.Max-Planck-Institut für MetallforschungInstitut für SondermetalleStuttgart

Personalised recommendations