Advertisement

Die viscosimetrische Molekulargewichtsbestimmung von Polymeren

  • G. Meyerhoff
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 3/1)

Keywords

Intrinsic Viscosity Polymethacrylic Acid Molecular Weight Dependence Dilute Solution Property Viscosity Molecular Weight Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. A 1.
    Alexander, P., and K. A. Stacy: The light-scattering and non-Newtonian viscosity of high molecular weight polymethacrylic acid. Trans. Faraday Soc. 51, 299 (1955).CrossRefGoogle Scholar
  2. A 2.
    Altgelt, K., u. G. V. Schulz: Bestimmung der makromolekularen Konstanten von Naturkautschuk III. Makromol. Chem. 36, 209 (1960).CrossRefGoogle Scholar
  3. A 3.
    Archibald, W. J.: A demonstration of some new methods of determining molecular weights from the data of the ultrazentrifuge. J. Phys. Chem. 51, 1204 (1947).CrossRefGoogle Scholar
  4. A 4.
    Arond, L. M., and H. P. Frank: Molecular weight, molecular weight distribution and molecular size of a native dextran. J. Phys. Chem. 58, 953 (1954).CrossRefGoogle Scholar
  5. A 5.
    Atkins, J. T., L. T. Muus, C. W. Smith and E. T. Pieski: The molecular structure of polyethylene. IX. Weight-average molecular weight and intrinsic viscosity of linear polyethylene. J. Am. Chem. Soc. 79, 5089 (1957).CrossRefGoogle Scholar
  6. B 1.
    Badger, R. M., and R. H. Blaker: The investigation of the properties of nitrocellulose molecules in solution by light-scattering methods. II. J. Phys. Chem. 53, 1056 (1949).CrossRefGoogle Scholar
  7. B 2.
    Basu, S., and H. B. Roy: Determination of the molecular weight of benzylcellulose. J. Sci. Ind. Res. 11 B, 94 (1952).Google Scholar
  8. B 3.
    Batzer, H.: Über lineare Polyester. Makromol. Chem. 5, 5 (1950).CrossRefGoogle Scholar
  9. B 4.
    u. A. Möschle: Über die Eigenschaften von Mischpolyamiden in Lösung und im festen Zustand. Makromol. Chem. 22, 195 (1957).Google Scholar
  10. B 5.
    Bawn, C. E. H., E. S. Hill and M. A. Wajid: The osmotic pressure of dilute solutions of polystyrene and polyisobutene. Trans. Faraday Soc. 52, 1651 (1956).Google Scholar
  11. B 6.
    R. D. Patel: Viscosity and chain dimensions of polyisobutene and polystyrene in mixed sovents. Trans. Faraday Soc. 52, 1669 (1956).Google Scholar
  12. B 7.
    Berkowitz, J. B., M. Yamin and R. M. Fuoss: The Flory constants for poly-4-vinylpyridine in ethanol. J. Polymer Sci. 28, 69 (1958).Google Scholar
  13. B 8.
    Bier, G., u. H. Krämer: Beitrag zur Struktur von Polyvinylchlorid. Makromol. Chem. 18/19, 151 (1950).Google Scholar
  14. B 9.
    Polymerisation von Vinylchlorid und Struktur von Polyvinylchlorid. Kunststoffe 46, 498 (1956).Google Scholar
  15. B 10.
    Billmeyer, F. W.: The molecular structure of polyethylene. III. Determination of long chain branching. J. Am. Chem. Soc. 75, 6118 (1953).CrossRefGoogle Scholar
  16. B 11.
    C. B. De Than: Dissymmetry of molecular light scattering in polymethyl methacrylates. J. Am. Chem. Soc. 77, 4763 (1955).CrossRefGoogle Scholar
  17. B 12.
    Bischoff, J., and V. Desreux: Properties of dilute solutions of polymethylmethacrylate. II. J. Polymer Sci. 10, 79 (1953).Google Scholar
  18. B 13.
    Bisschops, J.: Viscosity, diffusion and sedimentation of polyacrylonitrile solution. Polymer Sci. 17, 81 (1954).Google Scholar
  19. B 14.
    Booth, G. C., and V. Gold: Molecular weight studies of dextran. J. Chem. Soc. (London) 1956, 3380.Google Scholar
  20. B 15.
    Boyes, A. G., and U. P. Strauss: Light scattering and viscosity studies on poly-4-vinylpyridine. J. Polymer Sci. 22, 463 (1956).Google Scholar
  21. B 16.
    Brinkman, H. C.: Calculation of the viscosity and the sedimentation constant for solutions of large chain molecules taking into account the hampered flow of the solvent through these molecules. Physica 13, 447 (1947); Appl. Sci. Res. (B) 1, 27, 81 (1947); 2, 190 (1949).CrossRefGoogle Scholar
  22. B 17.
    Bueche, A. M.: Dimensions of coiling polymer molecules from viscosity and light scattering. J. Am. Chem. Soc. 71, 1452 (1949).Google Scholar
  23. C 1.
    Cantow, H. J.: Die Bestimmung der Molekulargewichtsverteilung in der Ultrazentrifuge bei der θ-Temperatur. Makromol. Chem. 30, 169 (1959).Google Scholar
  24. C 2.
    Cantow, M., G. Meyerhoff u. G. V. Schulz: Verzweigungsgrad und Viscositätszahl bei Polystyrolen. Makromol. Chem. 49, 1 (1961).CrossRefGoogle Scholar
  25. C 3.
    Carter, W. C., R. L. Scott and M. Magat: The viscosity-molecular weight relation for natural rubber. J. Am. Soc. 68, 1480 (1946).CrossRefGoogle Scholar
  26. C 4.
    Chiang, R.: Light scattering on dilute solutions of polypropylene. J. Polymer Sci. 28, 235 (1958).Google Scholar
  27. C 5.
    Chiang, R.: Comments on intrinsic viscosity weight average molecular weight relationships for polyethylene. J. Polymer Sci. 36, 91, 155 (1959).Google Scholar
  28. C 6.
    Chinai, S. N.: Poly-n-hexyl methacrylate. IV. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 25, 413 (1957).Google Scholar
  29. C 7.
    C. W. Bondurant: Polymethyl methacrylate, light scattering study in an ideal solvent. J. Polymer Sci. 22, 555 (1956).Google Scholar
  30. C 8.
    R. A. Guzzi: Poly-n-butyl-methacrylate. III. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 21, 417 (1956).Google Scholar
  31. C 9.
    Poly-n-lauryl methacrylate. V. Dlilute solution properties by viscosity and light scattering. J. Polymer Sci. 41, 475 (1959).Google Scholar
  32. C 10.
    , J. D. Matlack, A. L. Resnick and R. J. Samuels: Polymethyl methacrylate: Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 17, 391 (1955).Google Scholar
  33. C 11.
    , A. L. Resnick and H. T. Lee: Poly-n-octyl methacrylate. V. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 33, 471 (1951).Google Scholar
  34. C 12.
    R. J. Samuels: Polyethyl methacrylate. II. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 19, 463 (1956).Google Scholar
  35. C 13.
    , P. C. Scherer, C. V. Bondurant and D. W. Levi: Dilute solution studies on polystyrene by light scattering and viscosity. J. Polymer Sci. 22, 527 (1956).Google Scholar
  36. C 14.
    , and D. M. Levi: Molecular weight of polyvinyl acetate by light scattering and Viscosity techniques. J. Polymer Sci. 17, 117 (1955).Google Scholar
  37. C 15.
    R. J. Valles: Comparison of unperturbed molecular parameters of methacrylate polymers. J. Polymer Sci. 39, 363 (1959).Google Scholar
  38. C 16.
    Chirico, A. D.: Ricerce chimico-fisiche su soluzioni di policarbonato in chloroformio. Chim. e ind. (Milan) 42, 248 (1960).Google Scholar
  39. C 17.
    Ciampa, G., u. H. Schwindt: Zur viskosimetrischen Molekulargewichtsbestimmung des Polyvinylchlorids. Makromol. Chem. 21, 169 (1956).CrossRefGoogle Scholar
  40. C 18.
    Ciferri, A., M. Kryszewski et G. Weil: Étude par diffusion de la lumière et viscosimetrie du bromure de polyvinyle en solution. J. Polymer Sci. 167 (1958).Google Scholar
  41. C 19.
    , u. H. Lauretti: Die Viscosität von Polyvinylbromid in einem idealen Lösungsmittel. Ann. Chim. (Roma) 48, 198 (1958).Google Scholar
  42. C 20.
    Claesson, S., W. Bergmann u. G. Jayme: Über Sedimentations-und Diffusionsmessungen an in alkalischen Eisen-Weinsäure-Natrium-Komplex-(EWNN)-Lösungen gelöster Cellulose. Svensk Papperstidn. 62, 141 (1959).Google Scholar
  43. C 21.
    U. Lohmander: Non-Newtonian flow of macromolecular solutions studied by capillary viscometry with a million fold change in the velocity gradient. Makromol. Chem. 44–46, 461 (1961).Google Scholar
  44. C 22.
    Cleland, R. C.: A light scattering study of alfin polybutadiene. J. Polymer Sci. 27, 349 (1958).Google Scholar
  45. C 23.
    Cleland, R. L., and W. H. Stockmayer: An intrinsic viscosity molecular weight relation for polyacrylnitrile. J. Polymer Sci. 17, 473 (1955).Google Scholar
  46. C 24.
    McCormick, H. W.: Molecular weight distribution of polystyrene by sedimentation velocity analysis. J. Polymer Sci. 36, 341 (1959).Google Scholar
  47. C 25.
    Conix, A.: On the molecular weight determination of poly (ethylene terephthalate). Makromol. Chem. 26, 226 (1958).CrossRefGoogle Scholar
  48. C 26.
    Cowie, J. M. G., D. J. Worsfeld and S. Bywater: Light-scattering and osmotic pressure study on solutions of polystyrene of narrow molecular-weight distribution produced by anionic catalysis. Trans. Faraday Soc. 57, 705 (1961).CrossRefGoogle Scholar
  49. D 1.
    Debye, P., and A. M. Bueche: Intrinsic viscosity, diffusion and sedimentation rate of polymers in solution. J. Chem. Phys. 16, 573 (1948).CrossRefGoogle Scholar
  50. D 2.
    Dialer, K., u. K. Vogler: Molekulargewichtsverteilung von Polyvinylpyrrolidon. Makromol. Chem. 6, 191 (1951).CrossRefGoogle Scholar
  51. D 3.
    Dialer, K., K. Vogler, u. F. Patat: Zur Charakterisierung fraktionierter Polyvinylalkohole. Helv. Chim. Acta. 35, 869 (1952).CrossRefGoogle Scholar
  52. D 4.
    Didot, F. E., S. N. Chinai and D. Levi: VI. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 43, 557 (1960).Google Scholar
  53. D 5.
    Dieu, H. A.: Études des solutions d'alcool polyvinylique. J. Polymer Sci. 12, 417 (1954).Google Scholar
  54. D 6.
    Duch, E., u. L. Küchler: Molgewichtsbestimmungen bei höheren Temperaturen. Z. Elektrochem. 60, 218 (1956).Google Scholar
  55. E 1.
    Elias, H. G.: Über extrem große Makromoleküle III. Lichtstreuung, Extinktion und Mehrfachstreuung von Dextran-Lösungen. Makromol. Chem. 27, 192 (1958).Google Scholar
  56. E 2.
    Über extrem große Makromoleküle IV. Ultrazentrifugen-und Diffusionsmessungen an nicht-Newtonschen Lösungen nativer Dextrane. Makromol. Chem. 33, 166 (1959).Google Scholar
  57. E 3.
    u. F. Patat: Zur Verzweigung von Polyvinylacetat II. Makromol. Chem. 25, 13 (1957).Google Scholar
  58. E 4.
    Zum Verhalten von Makromolekülen in Lösung. J. Polymer. Sci. 29, 141 (1958).Google Scholar
  59. E 5.
    Everett, W. W., and J. F. Forster: The subfractionation of amylose and characterisation of the subfractions by light scattering. J. Am. Chem. Soc. 81, 3459 (1959).Google Scholar
  60. E 6.
    The conformation of amylose in solution. J. Am. Chem. Soc. 81, 3464 (1959).Google Scholar
  61. F 1.
    Fattakhov, K. Z., V. N. Tsvetkov and O. V. Kallistov: Investigation of solutions of linear polymers by the light-dispersion method (Tyndall effect). Zhur. Exper. i Teoret. Fiz. 26, 345, 351 (1954).Google Scholar
  62. F 2.
    Fee, J. G., W. S. Port and L. P. Witnauer: Molecular weight viscosity relationship of gamma-irradiated octadecyl vinyl ether and octadecyl methacrylate. J. Polymer Sci. 33, 95 (1958).Google Scholar
  63. F 3.
    Fessler, J. H., and A. G. Ogston: Studies of the sedimentation, diffusion and viscosity of some sarcosine polymers in aqueous solution. Trans. Faraday Soc. 47, 667 (1951).CrossRefGoogle Scholar
  64. F 4.
    Fixman, M.: Excluded volume in polymer chains. J. Chem. Phys. 23, 1656 (1955).Google Scholar
  65. F 5.
    Flory, P. J.: Molecular size distribution in linear condensation polymers. J. Am. Chem. Soc. 58, 1877 (1936).CrossRefGoogle Scholar
  66. F 6.
    Molecular size distribution in ethylene oxide polymers. J. Am. Chem. Soc. 62, 1561 (1940).Google Scholar
  67. F 7.
    -Principles of polymer chemistry. Cornell Univ. Press (1953).Google Scholar
  68. F 8.
    T. G. Fox: Molecular configuration and thermodynamic parameters from intrinsic viscosities. J. Polymer Sci. 5, 745 (1950).Google Scholar
  69. F 9.
    Treatment of intrinsic viscosities. J. Am. Chem. Soc. 73, 1904, 1909 (1951).Google Scholar
  70. F 10.
    Frank, H. P., and G. B. Levy: Determination of molecular weight of polyvinylpyrrolidone. J. Polymer Sci. 10, 371 (1953).Google Scholar
  71. F 11.
    Frisch, H. L., and J. L. Lundberg: A viscometric criterion of polymer polydispersity. J. Polymer Sci. 37, 123 (1959).Google Scholar
  72. F 12.
    Frisman, E. V., u. L. F. Shalaeva: Lichtstreuung von Polydichlorstyrol in Toluol. Doklady Akad. Nauk S.S.S.R. 101, 907 (1955).Google Scholar
  73. F 13.
    Frömbling, K., u. F. Patat: Über extrem große Makromoleküle I. Die Charakterisierung von Dextranen. Makromol. Chem. 25, 41 (1958).CrossRefGoogle Scholar
  74. F 14.
    Fujita, H., and T. Homma: Viscosity behavior of sodium carboxy methyl cellulose in water a high dilutions. J. Coll. Sci. 9, 591 (1954).Google Scholar
  75. F 15.
    , K. Mitsuhashi and T. Homma: Viscosities of sodium polyacrylate in aqueous chloride. J. Coll. Sci. Imp. Univ. Tokyo 9, 466 (1959).Google Scholar
  76. G 1.
    Gaylord, N. G., and S. Rosenbaum: Intrinsic viscosity and molecular weight of polyethylene terephthalate. J. Polymer Sci. 39, 545 (1959).Google Scholar
  77. G 2.
    Graham, W. D.: Viscosity weight average molecularweight for dextrans in the higher clinical size range. Can. J. Techn. 34, 83 (1956).Google Scholar
  78. G 3.
    Weight average molecular weight of polyvinylpyrrolidone preparations as determinated by light scattering. J. Pharm. and Pharmacol. 9, 230 (1957).Google Scholar
  79. G 4.
    Gralén, N.: Sedimentations and diffusion measurements on cellulose and cellulose derivatives. Dissertation Uppsala (1944).Google Scholar
  80. G 5.
    G. Lagermalm: A constribution to the knowledge of some physicochemical properties of polystyrene. J. Phys. Chem. 56, 514 (1954).Google Scholar
  81. G 6.
    Granath, K. A.: Solution properties of branched dextrans. J. Colloid Sci. 13, 308 (1958).CrossRefGoogle Scholar
  82. G 7.
    Guzman, G. M., and J. M. G. Fatou: Configurational properties of polyvinyl chloride by viscosity and light scattering measurements. Anales real. soc. españ. fis. y quim. 55 B, 129 (1959).Google Scholar
  83. H 1.
    Haug, A.: Dissertation Mainz 1961.Google Scholar
  84. H 2.
    Hengstenberg, J.: Über Lichtstreuungsmessungen an Fadenmolekülen. Makromol. Chem. 6, 127 (1950).Google Scholar
  85. H 3.
    u. E. Schuch: Molekulargewichtsbestimmung von Polyvinylpyrrolidonen (PVP) mittels des osmotischen Drucks und der Lichtstreuung ihrer Lösungen. Makromol. Chem. 7, 236 (1952).CrossRefGoogle Scholar
  86. H 4.
    Henley, D.: The cellulose solvent cadoxen, a preparation and a viscometric relationship with cupriethylene diamine. Svensk Papperstidn. 63, 143 (1960).Google Scholar
  87. H 5.
    Henrici-Olivé, G., S. Olivé u. G. V. Schulz: Selbstverzweigung und Übertragungsreaktion am Polymeren bei Polystyrol. Z. physik. Chem. N. F. 20, 176 (1959).Google Scholar
  88. H 6.
    Henry, P. M.: Fractionation of polyethylene. J. Polymer Sci. 36, 3 (1959).Google Scholar
  89. H 7.
    Holtzer, A. M., H. Benoit and P. Doty: The molecular configuration and hydrodynamic behavior of cellulose trinitrate. J. Phys. Chem. 58, 624 (1954).CrossRefGoogle Scholar
  90. H 8.
    Huggins, M. L.: The viscosity of dilute solutions of long chain molecules. IV. Dependence on concentration. J. Am. Chem. Soc. 64, 2716 (1942).Google Scholar
  91. H 9.
    Hunt, M. L., S. Newman, H. A. Scheraga and P. J. Flory: Dimensions and hydrodynamic properties of cellulose trinitrate molecules in dilute solutions. J. Phys. Chem. 60, 1278 (1956).CrossRefGoogle Scholar
  92. H 10.
    Huque, H. M., D. A. Goring and S. G. Mason: Molecular size and configuration of cellulose trinitrate in solution. Can. J. Chem, 36, 952 (1958).Google Scholar
  93. I 1.
    Immergut, E. H., B. G. Ranby and H. F. Mark: Recent work on molecular weight of cellulose. Ind. Eng. Chem. 45, 2483 (1953).Google Scholar
  94. I 2.
    Ito, H., S. Shimizu and S. Suzuki: Dependence of the viscosity of solutions of polymethylacrylate and polysodiumacrylate on molecular weight. Kôgyô Kagaku Zasshi 59, 930 (1956).Google Scholar
  95. J 1.
    Jayme, G., u. K. Neuschäffer: Cadmiumaminkomplexbasen als Lösungsmittel für Cellulose. Makromol. Chem. 23, 71 (1957).CrossRefGoogle Scholar
  96. J 2.
    Jullander, J.: Studies on nitrocellulose including the construction of an osmotic balance. Arkiv Kemi, Mineral. Geol. 20 A, Nr. 8 (1945).Google Scholar
  97. K 1.
    Katchalsky, A., and H. Eisenberg: Molecular weight of polyacrylic and polymethacrylic acid. J. Polymer Sci. 6, 145 (1951).Google Scholar
  98. K 2.
    Kern, W., u. D. Braun: Über die Polymerisation von p-Bromstyrol. Makromol. Chem. 27, 23 (1958).CrossRefGoogle Scholar
  99. K 3.
    Kinell, P. O.: On the Determination of molecular weight averages from sedimentation and diffusion data. Arkiv Kemi 31, 327 (1959).Google Scholar
  100. K 4.
    Kinsinger, J. B., and R. E. Hughes: Intrinsic viscosity-molecular weight relationships for isotactic and atactic polypropylene. J. Phys. Chem. 63, 2002 (1959).CrossRefGoogle Scholar
  101. K 5.
    Kirkwood, J. G. and J. Riseman: The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565 (1948).CrossRefGoogle Scholar
  102. K 6.
    Kirste, R., u. G. V. Schulz: Über die Temperatur-und die Molekulargewichtsabhängigkeit des 2. osmotischen Virialkoeffizienten von Polymethylmethacrylatlösungen. Z. physik. Chem. N. F. 27, 20 (1960) und Internat. Symposium über Makromoleküle Wiesbaden 1959 II B 3.Google Scholar
  103. K 7.
    Koepp, H. M., u. H. Werner: Endgruppenbestimmung und molekulare Verteilung bei Polyäthylenterephthalat. Makromol. Chem. 32, 79 (1959).CrossRefGoogle Scholar
  104. K 8.
    Korshak, V. V., and S. A. Palova: Determination of molecular weights of polyamides from viscosity of their solutions in cresol and methanol. Izvest. Akad. Nauk. S.S.S.R. 1955, 1107.Google Scholar
  105. K 9.
    Krigbaum, W. R., and D. K. Carpenter: The configuration of polymer molecules: polystyrene in cyclohexane. J. Phys. Chem. 59, 1166 (1955).CrossRefGoogle Scholar
  106. K 10.
    P. J. Flory: Molecular weight dependence of the intrinsic viscosity of polymer solutions. J. Polymer. Sci. 11, 37 (1953).Google Scholar
  107. K 11.
    A. M. Kotliar: The molecular weight of polyacrylonitile. J. Polymer Sci. 32, 323 (1958).Google Scholar
  108. K 12.
    L. Mandelkern and P. J. Flory: Molecular weight dependence of intrinsic viscosity of polymer solutions. J. Polymer Sci. 9, 381 (1952).Google Scholar
  109. K 13.
    Kuhn, W., u. H. Kuhn: Diffusion, Sedimentation und Viscosität bei Lösungen verzweigter Fadenmoleküle. Helv. Chim. Acta 30, 1233 (1947).Google Scholar
  110. K 14.
    u. P. Buchner: Hydrodynamisches Verhalten von Makromolekülen in Lösung. Ergebn. exakt. Naturw. 25, 1 (1951).Google Scholar
  111. K 15.
    Kuhn, H., W. Kuhn and A. Silberberg: Improved relations for diffusion and sedimentation constants and for viscosity and streaming birefringence of solutions of polymers. J. Polymer Sci. 14, 193 (1954).Google Scholar
  112. K 16.
    Kurata, M., and H. Yamakawa: Theorie of dilute polymer solution II. Osmotic pressure and frictional properties. J. Chem. Phys. 29, 311 (1958).CrossRefGoogle Scholar
  113. K 17.
    Kurosaki, S., T. Sudo and S. Watanabe: Sedimentation, diffusion and viscosity of polystyrene fractions in benzene solutions. J. Chem. Soc. Japan, Pure Chem. Sect. 73, 789 (1952).Google Scholar
  114. L 1.
    Lee, H. T., and D. W. Levi: Dilute solution study of poly (n-lauryl methacrylate) in an ideal solvent. J. Polymer Sci. 47, 449 (1960).Google Scholar
  115. L 2.
    Levy, G. B., and H. P. Frank: Determination of molecular weight of polyvinylpyrrolidone II. J. Polymer Sci. 17, 247 (1955).Google Scholar
  116. L 3.
    Lundberg, J. L., M. Y. Hellman and H. L. Frisch: The study of the polydispersity of polymers by viscometry. J. Polymer Sci. 46, 3 (1960).Google Scholar
  117. M 1.
    Manley, R. St. J.: Properties of ethylhydroxyethyl cellulose molecules in solution. Arkiv Kemi 9, 519 (1956).Google Scholar
  118. M 2.
    Marshall, J. and A. Todd: The thermal degradation of polyethylene terephthalate. Trans. Faraday Soc. 49, 67 (1953).CrossRefGoogle Scholar
  119. M 3.
    Marx, M.: Viskosimetrische Molekulargewichtsbestimmung von Cellulose in Kupfer-Äthylendiamin. Makromol. Chem. 16, 157 (1955).CrossRefGoogle Scholar
  120. M 4.
    , u. G. V. Schulz: Methodisches zur Bestimmung der Viscositätszahl (Staudinger Index) von Cellulose und Cellulosenitraten. Makromol. Chem. 31, 140 (1959).CrossRefGoogle Scholar
  121. M 5.
    Masuda, Y.: Solution viscosity of N,N′-dimethylhexamethylene diaminephthalic-acid condensation polymers. Kobunshi Kagaku 13, 540 (1956).Google Scholar
  122. M 6.
    Matsumoto, M., and Y. Ohyanygi: Viscosity-molecular weight relationship for polyvinyl acetate. J. Polymer Sci. 46, 441 (1960).Google Scholar
  123. M 7.
    Mendelson, R. A.: High molecular dimensions as estimated from solution properties of whole polymers. J. Polymer Sci. 46, 493 (1960).Google Scholar
  124. M 8.
    Meyerhoff, G.: Über die Durchschnittswerte der Molekulargewichte makromolekularer Substanzen. Makromol. Chem. 12, 61 (1954).Google Scholar
  125. M 9.
    Molekulargewichtsbestimmungen an verschieden scharf fraktionierten Polymethacrylsäuremethylestern. Makromol. Chem. 12, 45 (1954).Google Scholar
  126. M 10.
    Über den experiment. Zusammenhang zwischen Molekulargewicht und Viscositätszahl von Polystyrolen im Bereich vom M = 1000 bis 500000 auf Grund von Sedimentations-und Diffusionsmessungen. Z. physik. Chem. N. F. 4, 336 (1955).Google Scholar
  127. M 11.
    Über den Einfluß der Form des gelösten Moleküls auf das Viscositätsverhalten im Grenzbereich zwischen Nieder-und Hochmolekularen. Z. physik. Chem. N. F. 4, 346 (1955).Google Scholar
  128. M 12.
    Zur Charakterisierung semipermeabler Membranen für osmotische Zwecke. Z. Elektrochemie 61, 325 (1957).Google Scholar
  129. M 13.
    Zur Bestimmung von Molekulargewichten und ihrer Verteilung bei unfraktionierten Polymeren. Z. Elektrochemie 61, 1249 (1957).Google Scholar
  130. M 14.
    Ultrazentrifugenmessungen an Cellulosenitraten. Papier 11, 43 (1957).Google Scholar
  131. M 15.
    Neuere Bestimmungen des Molekulargewichtes und der molekularen Konstanten von Cellulosenitraten in Lösung. J. Polymer Sci. 29, 399 (1958).Google Scholar
  132. M 16.
    Zur Viskositäts-Molekulargewichtsbeziehung von Cellulosenitraten verschiedener Herkunft. Makromol. Chem. 32, 249 (1959).CrossRefGoogle Scholar
  133. M 17.
    Dimension of linear polymers in real and hypothetical solvents. J. Polymer Sci. 43, 269 (1960).Google Scholar
  134. M 18.
    Moleküldimensionen von Polymeren auf Grund hydrodynamischer Messungen. Makromol. Chem. 37, 97 (1960).CrossRefGoogle Scholar
  135. M 19.
    Viscositätszahl, Molekulargewicht und Einheitlichkeit anionischer Polystyrole nach Szwarc. Z. physik. Chem. N. F. 23, 100 (1960).Google Scholar
  136. M 20.
    u. M. Cantow: Molekulargewichte und Molekulargewichtsverteilungen unverzweigter und verzweigter Polystyrole. J. Polymer Sci. 34, 503 (1959).Google Scholar
  137. M 21.
    u. G. V. Schulz: Molekulargewichtsbestimmungen an Polymethacrylsäureestern mittels Sedimentation in der Ultrazentrifuge und Diffusion. Makromol. Chem. 7, 294 (1952).CrossRefGoogle Scholar
  138. M 22.
    Miller, L. E., and F. A. Hamm: Macromolecular properties of polyvinylpyrrolidone: Molecular weight distribution. J. phys. Chem. 57, 110 (1953).CrossRefGoogle Scholar
  139. M 23.
    Moore, W. R., and A. M. Brown: Relationship between viscosity and molecular weight of ethylcellulose. J. Appl. Chem. (London) 8, 363 (1958).Google Scholar
  140. M 24.
    Viscosity-temperature relationships for dilute solutions of cellulose derivatives I. Temperature dependence of solution viscosities of ethyl cellulose. J. Colloid Sci. 14, 1 (1959).Google Scholar
  141. M 25.
    B. M. Tidswell: Viscosity molecular weight relationships for cellulose acetate. J. Appl. Chem. (London) 8, 232 (1958).Google Scholar
  142. M 26.
    Mukherja, R. N., et P. Rempp: Étude physico-chimique de polymère obtenus par voie anionique en phase homogène. J. chim. phys. 56, 94 (1959).Google Scholar
  143. M 27.
    Muus, L. T., and F. W. Billmeyer: The molecular structure of polyethylene. VI. Molecular weight from dissymmetry of scattered light. J. Am. Chem. Soc. 79, 5079 (1957).CrossRefGoogle Scholar
  144. N 1.
    Naito, R.: Viscosity measurements on polyvinylalcohol solutions in dimethylsulfoxide. Kobunski Kagaku 15, 597 (1958).Google Scholar
  145. N 2.
    Newman, S., L. Loeb and C. M. Conrad: Viscosity, sedimentation, diffusion, and osmotic behavior of long chain nitrocellulose molecules. J. Polymer Sci. 10, 463 (1953).Google Scholar
  146. N 3.
    Notley, N. T., and P. Debye: Dimensions of linear polystyrene molecules in solution: Molecular weight dependence for low molecular weights. J. Polymer Sci. 24, 275 (1957).Google Scholar
  147. N 4.
    Nowakowski, B.: Unveröffentlichte Mainzer Messungen.Google Scholar
  148. O 1.
    Oehrn, O. E.: Precision viscometry of extremely dilute solutions of high polymers. Arkiv. Kemi 12, 397 (1958).Google Scholar
  149. O 2.
    Onyon, P. F.: Molecular weights and intrinsic viscosities of solution polymerized polyacrylonitrile. J. Polymer Sci. 37, 315 (1954).Google Scholar
  150. O 3.
    Characterization of molecular weight distributions by a viscometric method. Nature (Lond.) 183, 1670 (1959).Google Scholar
  151. O 4.
    Outer, P., C. I. Carr and B. H. Zimm: Light scattering investigation of the structure of polystyrene. J. Chem. Phys. 18, 830 (1950).CrossRefGoogle Scholar
  152. O 5.
    Oyama, T., and K. Kawahara: Light scattering investigation on polystyrenes of high molecular weight in toluene solutions. Nippon Kagaku Zashi 78, 484 (1957).Google Scholar
  153. O 6.
    and M. Ueda: Light scattering investigation on polystyrenes of high molecular weight dissolved in methylethylketone. Nippon Kagaku Zashi 79, 727 (1958).Google Scholar
  154. P 1.
    Parrini, P., F. Sebastiano and G. Messina: Intrinsic viscosity and molecular weight of isotactic polypropylene, Makromol. Chem. 38, 27 (1960).CrossRefGoogle Scholar
  155. P 2.
    Patat, F.: Das Problem der Membran bei osmotischen Messungen an Hochpolymeren. Z. Elektrochem. 60, 208 (1956).Google Scholar
  156. P 3.
    Membrane für osmotische Messungen. Makromol. Chem. 34, 120 (1959).CrossRefGoogle Scholar
  157. P 4.
    Peebles, L. H.: Branching in polyacrylonitrole. J. Am. Chem. Soc. 80, 5603 (1956).Google Scholar
  158. P 5.
    Peterlin, A.: Viscosity and sedimentation of linear macromolecules exhibiting partial solvent immobilization. J. Polymer Sci. 5, 473 (1950).Google Scholar
  159. P 6.
    Determination of the diameter of the coiled macromolecule from viscosity, sedimentation, and diffusion. J. Coll. Sci. 10, 587 (1955).CrossRefGoogle Scholar
  160. P 7.
    Die Viskositätszahl bei linearen und verzweigten Hochpolymeren. Z. Naturforsch. 10a, 412 (1955).Google Scholar
  161. P 8.
    Bestimmung von Molekülabmessungen aus Viskosität, Sedimentation und Diffusion. Makromol. Chem. 18/19, 254 (1956).Google Scholar
  162. P 9.
    Determination of molecular dimensions from rheological data. Makromol. Chem. 34, 89 (1959).CrossRefGoogle Scholar
  163. P 10.
    Philipp, H. J., and C. F. Bjork: Viscosity molecular weight relationship for cellulose acetate in acetone. J. Polymer. Sci. 6, 549 (1951).Google Scholar
  164. P 11.
    Pouradier, J., et A. M. Venet: Contribution a l'étude de la structure des gelatines. J. Chim. Phys. 47, 391 (1950).Google Scholar
  165. P 12.
    Price, F. P., S. G. Martin and J. P. Bianchi: The structure of polysiloxanes. J. Polymer Sci. 22, 41, 49 (1956).Google Scholar
  166. P 13.
    Ptitsyn, O. B., u. Y. E. Ejzner: Die Viskositätszahl Polymerer in guten Lösungsmitteln. Zhurn. Fiz. Khim. 32, 2464 (1958).Google Scholar
  167. R 1.
    Raman, N. K., and J. J. Hermans: Solution studies of some polyethylene samples. J. Polymer Sci. 35, 71 (1959).Google Scholar
  168. R 2.
    Rempp, P.: Contribution a l'étude des solution de molécules en chaine a squelette oxygéné. J. Chim. Phys. 54, 421, 432 (1957).Google Scholar
  169. R 3.
    Ribeyrolles, Ph., A. Guillot et H. Benoit: Étude physico-chimique des propriétés d'un polybutadiène en solution. J. Chim. Phys. 56, 377 (1959).Google Scholar
  170. R 4.
    Rusznak, I., I. Géczy and A. Ady: The viscometric determination of the molecular weight of super polyamides in aqueous chloralhydrate. Textiltechn. 7, 490 (1956).Google Scholar
  171. S 1.
    Sadron, C., et P. Rempp: Viscosités intrinseques de solutions de chaines courtes. J. Polymer Sci. 29, 127 (1958).Google Scholar
  172. S 2.
    Saini, G., G. Maldifassi u. L. Trossarelli: Molekulargewichts-Viskositätsbeziehung von Polyvinylacetat. Ann. Chim. (Rom) 44, 533 (1954).Google Scholar
  173. S 3.
    , Saini, G., u. L. Trossarelli: Die Polymeren von Butylacrylat. Atti. acced. sci. Torino 90, 410 (1955–56).Google Scholar
  174. S 4.
    Sato, T.: Determination of molecular weight of dextrans by light scattering. Kobunshi Kagaku 13, 526 (1956).Google Scholar
  175. S 5.
    Sato, H., and T. Yamamoto: Intrinsic viscosity molecular weight relation for poly-2-methyl-5-vinylpyridine (in Methanol und Dimethylformamid). Nippon Kagaku Zashi 80, 1393 (1959).Google Scholar
  176. S 6.
    Schaefgen, J. R., and P. J. Flory: Synthesis of multichain polymers and investigation of their viscosities. J. Am. Chem. Soc. 70, 2709 (1948).Google Scholar
  177. S 7.
    Scherer, P. C., A. Tannenbaum, and D. W. Levi: Molecular weight of ethyl cellulose. J. Polymer Sci. 43, 531 (1960).Google Scholar
  178. S 8.
    Schick, A. F., and S. J. Singer: On the concentration dependence of the rates of diffusion of macromolecules in solution. J. Phys. Chem. 54, 1028 (1950).CrossRefGoogle Scholar
  179. S 9.
    Scholtan, W.: Molekulargewichtsbestimmung von Polyvinylpyrrolidon mittels der Ultrazentrifuge. Makromol. Chem. 7, 209 (1952).CrossRefGoogle Scholar
  180. S 10.
    Schulz, G. V.: Über die Beziehung zwischen Reaktionsgeschwindigkeit und Zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen. Z. physik. Chem. B 30, 379 (1935).Google Scholar
  181. S 11.
    u. F. Blaschke: Eine Gleichung zur Berechnung der Viscositätszahl für sehr kleine Konzentrationen. J. prakt. Chem. 158, 130 (1941).Google Scholar
  182. S 12.
    u. H. J. Cantow: Vorschlag zur Unterscheidung der 2 Größen: „Grenzviskositätszahl“ und „konventionelle Viskositätszahl“. Makromol. Chem. 13, 71 (1954).CrossRefGoogle Scholar
  183. S 13.
    u. G. Meyerhoff: Bestimmung des Durchmessers geknäuelter Fadenmoleküle aus Lichtzerstreuung und Viskositätszahl: Untersuchungen an Polymethylmethacrylaten. J. Polymer Sci. 10, 79 (1953).Google Scholar
  184. S 14.
    G. Henrici-Olivé u. S. Olivé: Zur quantitativen Berücksichtigung veränderlicher Mittelwerte des Polymerisationsgrades bei der Bestimmung von Übertragungskonstanten. Z. physik. Chem. N. F. 19, 125 (1959).Google Scholar
  185. S 15.
    u. A. Horbach: Die molekularen Konstanten von Polycarbonaten in Lösung. Makromol. Chem. 29, 93 (1959).Google Scholar
  186. S 16.
    u. G. Meyerhoff: Bestimmung der Knäueldimensionen von Fadenmolekülen in Lösungen aus Reibungsdaten. Z. Elektrochemie 56, 904 (1952).Google Scholar
  187. S 17.
    Senti, F. R., N. N. Hellman u. Mitarb.: Viscosity, sedimentation and lightscattering properties of fractions of an acid hydrolyzed dextran. J. Polymer Sci. 17, 527 (1955).Google Scholar
  188. S 18.
    Sharples, A., and H. M. Major: Determination of constants in the intrinsic viscosity molecular weight equation (cellulose acetat). J. Polymer Sci. 27s, 433 (1958).Google Scholar
  189. S 19.
    Shultz, A. R.: Polyvinylacetate: a light scattering and viscosity study. J. Am. Chem. Soc. 76, 3422 (1952).Google Scholar
  190. S 20.
    Singer, S.: Molecular weight averages obtained from sedimentation velocity and diffusion measurements. J. Polymer Sci. 1, 445 (1946).Google Scholar
  191. S 21.
    Staudinger, H., u. M. Sorkin: Über Viscositätsuntersuchungen an Cellulosenitraten. Ber. dtsch. chem. Ges. 70, 1993 (1937).Google Scholar
  192. S 22.
    Stockmayer, W. H., and A. C. Albrecht: Friction constants of chain molecules with excluded volume. J. Polymer Sci. 32, 215 (1958).Google Scholar
  193. S 23.
    u. R. O. Howard: Zitiert nach [M 5).Google Scholar
  194. S 24.
    Strauss, U. P., and P. L. Wineman: Molecular dimensions and interaction of long chain polyphosphates in sodium bromide solutions. J. Am. Chem. Soc. 80, 2366 (1958).Google Scholar
  195. T 1.
    Thurmond, C. D., and B. H. Zimm: Size and shape of the molecules in artifically branched polystyrene. J. Polymer Sci. 8, 477 (1952).Google Scholar
  196. T 2.
    Tossarelli, L., and E. Campi: Light scattering of isotactic polystyrene. J. Polymer Sci. 35, 205 (1959).Google Scholar
  197. T 3.
    Trementozzi, Q. A.: Effect of long chain branching on some solution properties of polyethylene. J. Polymer Sci. 23, 887 (1957).Google Scholar
  198. T 4.
    Molecular weights and molecular dimensions of linear and branched polyethylenes. J. Polymer Sci. 36, 113 (1959).Google Scholar
  199. T 5.
    Tsvetkov, V. N., and O. V. Kallistov: Light dispersion and viscosity of solutions of the fractions of poly-p-tert-butylphenylmethacrylate in acetone. Zhur. Fiz. Khim. 33, 710 (1959).Google Scholar
  200. T 6.
    S. Y. Kotlyar: Investigation of polyvinylacetet solutions by the lightdispersing method. Zhur. Fiz. Khim. 30, 1100 (1956).Google Scholar
  201. T 7.
    Tung, L. H.: Zitiert nach P. M. Henry: (H 6).Google Scholar
  202. T 8.
    Molecular weight-intrinsic viscosity relationship and molecular weight distribution of low pressure polyethylenes. J. Polymer Sci. 24, 333 (1957).Google Scholar
  203. T 9.
    A light-scattering study of low pressure polyethylene fractions. J. Polymer Sci. 36, 287 (1959).Google Scholar
  204. U 1.
    Uda, K., u. G. Meyerhoff: Hydrodynamische Eigenschaften von Methylcellulosen in Lösung. Makromol. Chem. 47, 168 (1961).CrossRefGoogle Scholar
  205. W 1.
    Wales, M., P. A. Marshall and S. G. Weissberg: Intrinsic viscosity molecular weight relationships for dextran. J. Polymer Sci. 10, 229 (1953).Google Scholar
  206. W 2.
    , J. W. Williams, J. O. Thompson and R. H. Ewart: Sedimentation equilibra of polydisperse non-ideal-solutes. J. Phys. Chem. 52, 983 (1948).Google Scholar
  207. W 3.
    Walsh, E. K., and H. S. Kaufman: Intrinsic viscosity molecular weight relationships for polychlorotrifluoroethylene. J. Polymer Sci. 26, 1 (1957).Google Scholar
  208. W 4.
    Ward, I. M.: Measurement of hydroxyl and carboxyl endgroups in polyethylene terephthalate. Trans. Faraday Soc. 53, 1406 (1957).CrossRefGoogle Scholar
  209. W 5.
    Molecular weight determination in polyethylene terephthalate. Nature (Lond.) 180, 141 (1957).Google Scholar
  210. W 6.
    Wesslau, H.: Die Molekulargewichtsverteilung einiger Niederdruckpolyäthylene. Makromol. Chem. 20, 111 (1956).Google Scholar
  211. Z 1.
    Zimm, B. H.: Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24, 269 (1956).Google Scholar
  212. Z 2.
    R. W. Kilb: Dynamics of branched polymer molecules in dilute solution. J. Polymer Sci. 37, 19 (1959).Google Scholar
  213. Z 3.
    W. H. Stockmayer: The dimensions of chain molecules containing branches and rings. J. Chem. Phys. 17, 1301 (1949).CrossRefGoogle Scholar
  214. Z 4.
    and M. Fixman: Excluded volume in polymer chains. J. Chem. Phys. 21, 1716 (1953).Google Scholar

Copyright information

© Springer-Verlag 1961

Authors and Affiliations

  • G. Meyerhoff
    • 1
  1. 1.Institut für physikalische Chemie der Universität MainzDeutschland

Personalised recommendations